A193667 Triangular array: the fission of (p(n,x)) by (q(n,x)), where p(n,x)=(x+1)^n and q(n,x)=sum{F(k+1)*x^(n-k) : 0<=k<=n}, where F=A000045 (Fibonacci numbers).
1, 1, 3, 1, 4, 8, 1, 5, 12, 21, 1, 6, 17, 33, 55, 1, 7, 23, 50, 88, 144, 1, 8, 30, 73, 138, 232, 377, 1, 9, 38, 103, 211, 370, 609, 987, 1, 10, 47, 141, 314, 581, 979, 1596, 2584, 1, 11, 57, 188, 455, 895, 1560, 2575, 4180, 6765, 1, 12, 68, 245, 643, 1350, 2455
Offset: 0
Examples
First six rows: 1 1...3 1...4...8 1...5...12...21 1...6...17...33...55 1...7...23...50...88...144
Programs
-
Mathematica
z = 11; p[n_, x_] := (x + 1)^n; q[n_, x_] := Sum[Fibonacci[k + 1]*x^(n - k), {k, 0, n}]; p1[n_, k_] := Coefficient[p[n, x], x^k]; p1[n_, 0] := p[n, x] /. x -> 0; d[n_, x_] := Sum[p1[n, k]*q[n - 1 - k, x], {k, 0, n - 1}] h[n_] := CoefficientList[d[n, x], {x}] TableForm[Table[Reverse[h[n]], {n, 0, z}]] Flatten[Table[Reverse[h[n]], {n, -1, z}]] (* A193667 *) TableForm[Table[h[n], {n, 0, z}]] Flatten[Table[h[n], {n, -1, z}]] (* A125172 *)
Comments