cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A125175 Triangle T(n,k) = |A053123(n/2+k/2,k)| for even n+k, T(n,k)= A082985((n+k-1)/2,k) for odd n+k; read by rows, 0<=k<=n.

Original entry on oeis.org

1, 1, 2, 1, 3, 3, 1, 4, 5, 4, 1, 5, 10, 7, 5, 1, 6, 14, 20, 9, 6, 1, 7, 21, 30, 35, 11, 7, 1, 8, 27, 56, 55, 56, 13, 8, 1, 9, 36, 77, 126, 91, 84, 15, 9, 1, 10, 44, 120, 182, 252, 140, 120, 17, 10, 1, 11, 55, 156, 330, 378, 462, 204, 165, 19, 11
Offset: 0

Views

Author

Gary W. Adamson, Nov 22 2006

Keywords

Examples

			First few rows of the triangle are:
  1;
  1, 2;
  1, 3,  3;
  1, 4,  5,  4;
  1, 5, 10,  7,   5;
  1, 6, 14, 20,   9,  6;
  1, 7, 21, 30,  35, 11,  7;
  1, 8, 27, 56,  55, 56, 13,  8;
  1, 9, 36, 77, 126, 91, 84, 15, 9; ...
		

Crossrefs

Cf. A053123, A082985, A125176 (row sums).

Programs

  • Magma
    [[ k eq n select n+1 else (n+k mod 2) eq 0 select Binomial(n+1,k) else Binomial(n-1, k)*(n+k)/(n-k): k in [0..n]]: n in [0..12]]; // G. C. Greubel, Jun 05 2019
    
  • Maple
    A125175 := proc(n,k)
            if type(n+k,'even') then
                    binomial(n+1,k) ;
            else
                    binomial(n-1,k)*(n+k)/(n-k) ;
            end if;
    end proc: # R. J. Mathar, Sep 08 2013
  • Mathematica
    Table[If[EvenQ[n+k], Binomial[n+1, k], Binomial[n-1, k]*(n+k)/(n-k)], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Jun 05 2019 *)
  • PARI
    {T(n,k) = if((n+k)%2==0, binomial(n+1,k), binomial(n-1, k)* (n+k)/(n-k))}; \\ G. C. Greubel, Jun 05 2019
    
  • Sage
    def T(n, k):
        if (mod(n+k,2)==0): return binomial(n+1,k)
        else: return binomial(n-1, k)* (n+k)/(n-k)
    [[T(n, k) for k in (0..n)] for n in (0..12)] # G. C. Greubel, Jun 05 2019

Formula

T(n,k) = binomial(n+1,k) if n+k even. T(n,k) = binomial(n-1,k)*(n+k)/(n-k) if n+k odd. - R. J. Mathar, Sep 08 2013