cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A125182 Triangle read by rows: T(n,k) is the number of permutations p of {1,2,...,n} such that the set {p(i)-i, i=1,2,...,n} has exactly k elements (1<=k<=n).

Original entry on oeis.org

1, 1, 1, 1, 2, 3, 1, 4, 12, 7, 1, 4, 38, 54, 23, 1, 8, 77, 248, 303, 83, 1, 6, 160, 824, 2008, 1636, 405, 1, 11, 285, 2320, 9449, 15789, 10352, 2113, 1, 10, 476, 5564, 37237, 102726, 133293, 70916, 12657, 1, 14, 799, 13172, 122708, 536900, 1158368, 1177168, 537373, 82297
Offset: 1

Views

Author

Emeric Deutsch, Nov 24 2006

Keywords

Comments

Row sums are the factorial numbers (A000142). T(n,1)=1 (the identity permutation). T(n,2) = A065608(n) = (sum of divisors of n)-(number of divisors of n). T(n,n) = A099152(n). In the first Maple program define n (<=10) to obtain row n.
T(n,k) is also the number of permutations p of {1,2,...,n} such that the set {p(i) + i, i=1,2,...,n} has exactly k elements (1<=k<=n). Example: T(4,2)=4 because we have 1432, 3412, 2143 and 3214. - Emeric Deutsch, Nov 28 2008

Examples

			T(4,2) = 4 because we have 4123, 3412, 2143 and 2341.
Triangle starts:
  1;
  1, 1;
  1, 2,  3;
  1, 4, 12,  7;
  1, 4, 38, 54, 23;
  ...
		

Crossrefs

Programs

  • Maple
    n:=7: with(combinat): P:=permute(n): for j from 1 to n! do c[j]:=0 od: for j from 1 to n! do if nops({seq(P[j][i]-i,i=1..n)}) = 1 then c[1]:=c[1]+1 elif nops({seq(P[j][i]-i,i=1..n)}) = 2 then c[2]:=c[2]+1 elif nops({seq(P[j][i]-i,i=1..n)}) = 3 then c[3]:=c[3]+1 elif nops({seq(P[j][i]-i,i=1..n)}) = 4 then c[4]:=c[4]+1 elif nops({seq(P[j][i]-i,i=1..n)}) = 5 then c[5]:=c[5]+1 elif nops({seq(P[j][i]-i,i=1..n)}) = 6 then c[6]:=c[6]+1 elif nops({seq(P[j][i]-i,i=1..n)}) = 7 then c[7]:=c[7]+1 elif nops({seq(P[j][i]-i,i=1..n)}) = 8 then c[8]:=c[8]+1 elif nops({seq(P[j][i]-i,i=1..n)}) = 9 then c[9]:=c[9]+1 elif nops({seq(P[j][i]-i,i=1..n)}) = 10 then c[10]:=c[10]+1 else fi od: seq(c[i],i=1..n);
    # second Maple program:
    b:= proc(p, s) option remember; `if`(p={}, x^nops(s),
          add(b(p minus {t}, s union {t+nops(p)}), t=p))
        end:
    T:= n-> (p-> seq(coeff(p, x, i), i=1..n))(b({$1..n}, {})):
    seq(T(n), n=1..9);  # Alois P. Heinz, May 04 2014; revised, Sep 08 2018
  • Mathematica
    b[i_, p_List, s_List] := b[i, p, s] = If[p == {}, x^Length[s], Sum[b[i+1, p ~Complement~ {t}, s ~Union~ {t+i}], {t, p}]]; T[n_] := Function[{p}, Table[ Coefficient[p, x, i], {i, 1, n}]][b[1, Range[n], {}]]; Table[T[n], {n, 1, 9}] // Flatten (* Jean-François Alcover, Feb 19 2015, after Alois P. Heinz *)

Formula

Sum_{k=1..n} k * T(n,k) = A306455(n). - Alois P. Heinz, Feb 16 2019