A125198 Number of magical labelings of the octahedral graph of magic sum n.
1, 8, 40, 144, 417, 1032, 2272, 4568, 8545, 15072, 25320, 40824, 63553, 95984, 141184, 202896, 285633, 394776, 536680, 718784, 949729, 1239480, 1599456, 2042664, 2583841, 3239600, 4028584, 4971624, 6091905, 7415136, 8969728, 10786976, 12901249, 15350184
Offset: 0
Links
- Colin Barker, Table of n, a(n) for n = 0..1000
- M. M. Ahmed, Algebraic Combinatorics of Magic Squares, math.CO/0405476, p73.
- R. P. Stanley, Examples of Magic Labelings, Unpublished Notes, 1973 [Cached copy, with permission]
- Index entries for linear recurrences with constant coefficients, signature (6,-14,14,0,-14,14,-6,1).
Programs
-
Maple
a := proc(r) local r2 ; r2 := r^6/120+r^5/10+25*r^4/48+3*r^3/2+38*r^2/15+12*r/5 ; if r mod 2 = 0 then r2+1 ; else r2+15/16 ; fi ; end: for n from 0 to 40 do printf("%d ",a(n)) ; od;
-
Mathematica
(1 + 2*x + 6*x^2 + 2*x^3 + x^4)/((1 - x)^7*(1 + x)) + O[x]^40 // CoefficientList[#, x]& (* Jean-François Alcover, Apr 01 2018 *)
-
PARI
Vec((1+2*x+6*x^2+2*x^3+x^4)/((1-x)^7*(1+x)) + O(x^40)) \\ Colin Barker, Jan 13 2017
Formula
G.f.: (1+2*x+6*x^2+2*x^3+x^4)/((1-x)^7*(1+x)). [Stanley] - N. J. A. Sloane, Jul 07 2014
From Colin Barker, Jan 13 2017: (Start)
a(n) = (15*(31+(-1)^n) + 1152*n + 1216*n^2 + 720*n^3 + 250*n^4 + 48*n^5 + 4*n^6) / 480.
a(n) = 6*a(n-1) - 14*a(n-2) + 14*a(n-3) - 14*a(n-5) + 14*a(n-6) - 6*a(n-7) + a(n-8) for n>7.
(End)
Extensions
Stanley reference added by N. J. A. Sloane, Jul 07 2014