cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A125205 Irregular triangle read by rows T(n,k) (n>=1, 0<=k<=n(n-1)/2) giving the total number of connected components in all subgraphs (V,E') with |E'|=k of the complete labeled graph K_n=(V,E).

Original entry on oeis.org

1, 2, 1, 3, 6, 3, 1, 4, 18, 30, 24, 15, 6, 1, 5, 40, 135, 250, 295, 282, 215, 120, 45, 10, 1, 6, 75, 420, 1385, 3015, 4800, 6365, 7170, 6705, 5065, 3009, 1365, 455, 105, 15, 1, 7, 126, 1050, 5355, 18690, 47880, 96796, 166890, 251370, 329945, 373947, 362292, 297115
Offset: 1

Views

Author

Max Alekseyev, Nov 23 2006

Keywords

Examples

			Triangle begins:
  1;
  2,  1;
  3,  6,   3,   1;
  4, 18,  30,  24,  15,   6,   1;
  5, 40, 135, 250, 295, 282, 215, 120, 45, 10, 1;
  ...
T(3,1) = 6 since there are three different subgraphs of K_3 with one edge and each subgraph has two connected components.
		

Crossrefs

Cf. A062734.
Cf. A125206 (row-reversed version), A125207 (row sums).

Programs

  • PARI
    { G=sum(n=0,6,(1+y)^(n*(n-1)/2)*x^n/n!); K=G*log(G); for(n=1,6,print(Vecrev(n!*polcoeff(K,n,x)))) }

Formula

G.f.: Sum_{n,k} T(n,k)*x^n/n!*y^k=(F(x,y)-1)*exp(F(x,y)-1)=G(x,y)*log(G(x,y)) where G(x,y)=Sum_{n=0..oo} (1+y)^(n(n-1)/2)*x^n/n! and F(x,y)=1+log(G(x,y)) is g.f. of A062734.