A125210 Irregular triangle read by rows: T(n,k) (n>=1, 0<=k<=n(n-1)/2) is such that Sum_k T(n,k)*q^k gives the expectation of the number of connected components in a random graph on n labeled vertices where every edge is present with probability q.
1, 2, -1, 3, -3, 0, 1, 4, -6, 0, 4, 3, -6, 2, 5, -10, 0, 10, 15, -18, -60, 130, -105, 40, -6, 6, -15, 0, 20, 45, -18, -330, 60, 2445, -6485, 8712, -7260, 3925, -1350, 270, -24, 7, -21, 0, 35, 105, 42, -980, -1950, 11760, 12355, -182721, 589281, -1128820, 1502550, -1471305
Offset: 1
Examples
Triangle begins: 1; 2, -1; 3, -3, 0, 1; 4, -6, 0, 4, 3, -6, 2; 5, -10, 0, 10, 15, -18, -60, 130, -105, 40, -6; ... Sum_k T(3,k)*q^k = 3-3*q+q^3 is the expectation of the number of connected components in a random graph on 3 labeled vertices where every edge is present with probability q.
Programs
-
PARI
{ H=sum(n=0,6,x^n/(1-q)^(n*(n-1)/2)/n!); B=H*log(H); for(n=1,6,print(Vecrev((1-q)^(n*(n-1)/2)*n!*polcoeff(B,n,x)))) }