A125233 Triangle T(n,k) read by rows, the (n-k)-th term of the k times repeated partial sum of the hexagonal numbers, 0 <= k < n, 0 < n.
1, 6, 1, 15, 7, 1, 28, 22, 8, 1, 45, 50, 30, 9, 1, 66, 95, 80, 39, 10, 1, 91, 161, 175, 119, 49, 11, 1, 120, 252, 336, 294, 168, 60, 12, 1, 153, 372, 588, 630, 462, 228, 72, 13, 1, 190, 525, 960, 1218, 1092, 690, 300, 85, 14, 1, 231, 715, 1485, 2178, 2310, 1782, 990, 385, 99, 15, 1
Offset: 0
Examples
First few rows of the triangle: 1; 6, 1; 15, 7, 1; 28, 22, 8, 1; 45, 50, 30, 9, 1; 66, 95, 80, 39, 10, 1; 91, 161, 175, 119, 49, 11, 1; ... Example: (5,3) = 80 = 30 + 50 = (4,3) + (4,2).
References
- Albert H. Beiler, "Recreations in the Theory of Numbers", Dover, 1964, p. 189.
Programs
-
Maple
A000384Psum:= proc(n,k) coeftayl( x*(1+3*x)/(1-x)^(3+k),x=0,n) ; end: A125233 := proc(n,k) A000384Psum(n-k,k) ; end: for n from 1 to 15 do for k from 0 to n -1 do printf("%d,",A125233(n,k)) ; od: od: # R. J. Mathar, May 03 2008
-
Mathematica
T[n_, k_] := T[n, k] = Which[k == 0, n (2 n - 1), 1 <= k < n, T[n - 1, k] + T[n - 1, k - 1], True, 0]; Table[T[n, k], {n, 1, 11}, {k, 0, n - 1}] // Flatten (* Jean-François Alcover, Sep 14 2023, after R. J. Mathar *)
Formula
T(n,0)=A000384(n). T(n,k) = T(n-1,k) + T(n-1,k-1), k>1. - R. J. Mathar, May 03 2008
Extensions
Edited and extended by R. J. Mathar, May 03 2008, and M. F. Hasler, Sep 29 2012
Comments