cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A126277 Triangle generated from Eulerian numbers.

Original entry on oeis.org

1, 1, 2, 1, 3, 3, 1, 4, 7, 4, 1, 5, 11, 15, 5, 1, 6, 15, 26, 31, 6, 1, 7, 19, 37, 57, 63, 7, 1, 8, 23, 48, 83, 120, 127, 8, 1, 9, 27, 59, 109, 177, 247, 255, 9, 1, 10, 31, 70, 135, 234, 367, 502, 511, 10
Offset: 1

Views

Author

Gary w. Adamson, Dec 23 2006

Keywords

Comments

N-th diagonal starting from the right = binomial transform of [1, N, q, q, q, ...) where q = 2*N - 2. Given the infinite set of triangles "T" composed of partial column sums of the polygonal numbers, the N-th diagonal starting from the right = row sums of triangle "T": (T=3 = A104712; T=4 = A125165; T=5 = A125232; T=6 = A125233; T=7 = A125234, T=8 = A125235; and so on). For example, 3rd diagonal from the right = the offset Eulerian numbers, (1, 4, 11, 26, 57, 120, ...) = row sums of Triangle A104712 having partial column sums of the triangular numbers: 1; 3, 1; 6, 4, 1; 10, 10, 5, 1; 15, 20, 15, 6, 1; ... Row sums = A124671: (1, 3, 7, 16, 37, 85, 191, ...).

Examples

			First few rows of the triangle:
  1;
  1,  2;
  1,  3,  3;
  1,  4,  7,  4;
  1,  5, 11, 15,   5;
  1,  6, 15, 26,  31,   6;
  1,  7, 19, 37,  57,  63,   7;
  1,  8, 23, 48,  83, 120, 127,   8;
  1,  9, 27, 59, 109, 177, 247, 255,   9;
  1, 10, 31, 70, 135, 234, 367, 502, 511, 10;
  ...
T(7,4) = 37 = A000295(4) + T(6,4) = 11 + 26.
		

Crossrefs

Programs

  • Mathematica
    T[n_,1]:=1; T[n_,n_]:=n; T[n_,k_]:= T[n-1,k] + 2^k - k - 1; Table[T[n,k], {n,1,15}, {k,1,n}]//Flatten (* G. C. Greubel, Oct 23 2018 *)
  • PARI
    {T(n,k) = if(k==1, 1, if(k==n, n, 2^k - k - 1 + T(n-1,k)))};
    for(n=1,10, for(k=1,n, print1(T(n,k), ", "))) \\ G. C. Greubel, Oct 23 2018

Formula

Given right border = (1,2,3,...), T(n,k) = A000295(k) + T(n-1,k); where A000295 = the Eulerian numbers starting (0, 1, 4, 11, 26, 57, ...).

A125234 Triangle T(n,k) read by rows: the k-th column contains the k-fold iterated partial sum of A000566.

Original entry on oeis.org

1, 7, 1, 18, 8, 1, 34, 26, 9, 1, 55, 60, 35, 10, 1, 81, 115, 95, 45, 11, 1, 112, 196, 210, 140, 56, 12, 1, 148, 308, 406, 350, 196, 68, 13, 1, 189, 456, 714, 756, 546, 264, 81, 14, 1, 235, 645, 1170, 1470, 1302, 810, 345, 95, 15, 1, 286, 880, 1815, 2640, 2772, 2112, 1155, 440, 110, 16, 1
Offset: 1

Views

Author

Gary W. Adamson, Nov 24 2006

Keywords

Comments

The leftmost column contains the heptagonal numbers A000566.
The adjacent columns to the right are A002413, A002418, A027800, A051946, A050484.
Row sums = 1, 8, 27, 70, 161, 348, 727, ... = 6*(2^n-1)-5*n.

Examples

			First few rows of the triangle are:
  1;
  7, 1;
  18, 8, 1;
  34, 26, 9, 1;
  55, 60, 35, 10, 1;
  81, 115, 95, 45, 11, 1;
  112, 196, 210, 140, 56, 12, 1;
Example: T(6,2) = 95 = 35 + 60 = T(5,2) + T(5,1).
		

References

  • Albert H. Beiler, Recreations in the Theory of Numbers, Dover, 1966, p. 189.

Crossrefs

Analogous triangles for the hexagonal and pentagonal numbers are A125233 and A125232.

Programs

  • Maple
    A000566 := proc(n) n*(5*n-3)/2 ; end: A125234 := proc(n,k) if k = 0 then A000566(n); elif k>= n then 0 ; else procname(n-1,k-1)+procname(n-1,k) ; fi; end: seq(seq(A125234(n,k),k=0..n-1),n=1..16) ; # R. J. Mathar, Sep 09 2009
  • Mathematica
    A000566[n_] := n(5n-3)/2;
    T[n_, k_] := Which[k == 0, A000566[n], k >= n, 0, True, T[n-1, k-1] + T[n-1, k] ];
    Table[Table[T[n, k], {k, 0, n-1}], {n, 1, 11}] // Flatten (* Jean-François Alcover, Oct 26 2023, after R. J. Mathar *)

Formula

T(n,0) = A000566(n). T(n,k) = T(n-1,k) + T(n-1,k-1), k>0.

Extensions

Edited and extended by R. J. Mathar, Sep 09 2009

A126284 a(n) = 5*2^n - 4*n - 5.

Original entry on oeis.org

1, 7, 23, 59, 135, 291, 607, 1243, 2519, 5075, 10191, 20427, 40903, 81859, 163775, 327611, 655287, 1310643, 2621359, 5242795, 10485671, 20971427, 41942943, 83885979, 167772055, 335544211, 671088527, 1342177163, 2684354439
Offset: 1

Views

Author

Gary W. Adamson, Dec 24 2006

Keywords

Comments

Row sums of A125233.
A triangle with left and right borders being the odd numbers 1,3,5,7,... will give the same partial sums for the sum of its rows. - J. M. Bergot, Sep 29 2012
The triangle in the above comment is constructed the same way as Pascal's triangle, i.e., C(n, k) = C(n-1, k) + C(n-1, k-1). - Michael B. Porter, Oct 03 2012

Crossrefs

Programs

  • GAP
    List([1..30],n->5*2^n-4*n-5); # Muniru A Asiru, Oct 24 2018
  • Magma
    [5*2^n - 4*n - 5: n in [1..30]]; // G. C. Greubel, Oct 23 2018
    
  • Maple
    A126284:=n->5*2^n-4*n-5; seq(A126284(n), n=1..50); # Wesley Ivan Hurt, Mar 27 2014
  • Mathematica
    CoefficientList[Series[(1 + 3 x)/(1 - 4 x + 5 x^2 - 2 x^3), {x, 0, 50}], x] (* Vincenzo Librandi, Mar 28 2014 *)
  • PARI
    a(n)=5<Charles R Greathouse IV, Oct 03 2012
    

Formula

a(1) = 1; a(2) = 7; a(n) = 4*a(n-1) - 5*a(n-2) + 2*a(n-3), n > 2.
The 6th diagonal from the right of A126277.
G.f.: x*(1+3*x)/(1-4*x+5*x^2-2*x^3). - Colin Barker, Feb 12 2012
E.g.f.: 5*exp(2*x) - (5+4*x)*exp(x). - G. C. Greubel, Oct 23 2018

Extensions

More terms from Vladimir Joseph Stephan Orlovsky, Oct 18 2008
New definition from R. J. Mathar, Sep 29 2012

A135856 A007318 * a bidiagonal matrix with all 1's in the main diagonal and all 4's in the subdiagonal.

Original entry on oeis.org

1, 5, 1, 9, 6, 1, 13, 15, 7, 1, 17, 28, 22, 8, 1, 21, 45, 50, 30, 9, 1, 25, 66, 95, 80, 39, 10, 1, 29, 91, 161, 175, 119, 49, 11, 1, 33, 120, 252, 336, 294, 168, 60, 12, 1, 37, 153, 372, 588, 630, 462, 228, 72, 13, 1
Offset: 1

Views

Author

Gary W. Adamson, Dec 01 2007

Keywords

Comments

Row sums = A048487.
When the first column is removed from this triangle, the result is A125233. - Georg Fischer, Jul 26 2023

Examples

			First few rows of the triangle:
   1;
   5,  1;
   9,  6,  1;
  13, 15,  7,  1;
  17, 28, 22,  8,  1;
  21, 45, 50, 30,  9,  1;
  25, 66, 95, 80, 39, 10,  1;
  ...
		

Crossrefs

Formula

Binomial transform of an infinite lower triangular matrix with all 1's in the main diagonal and all 4's in the subdiagonal (by columns, (1, 4, 0, 0, 0, ...) in every column.
Showing 1-4 of 4 results.