cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A126277 Triangle generated from Eulerian numbers.

Original entry on oeis.org

1, 1, 2, 1, 3, 3, 1, 4, 7, 4, 1, 5, 11, 15, 5, 1, 6, 15, 26, 31, 6, 1, 7, 19, 37, 57, 63, 7, 1, 8, 23, 48, 83, 120, 127, 8, 1, 9, 27, 59, 109, 177, 247, 255, 9, 1, 10, 31, 70, 135, 234, 367, 502, 511, 10
Offset: 1

Views

Author

Gary w. Adamson, Dec 23 2006

Keywords

Comments

N-th diagonal starting from the right = binomial transform of [1, N, q, q, q, ...) where q = 2*N - 2. Given the infinite set of triangles "T" composed of partial column sums of the polygonal numbers, the N-th diagonal starting from the right = row sums of triangle "T": (T=3 = A104712; T=4 = A125165; T=5 = A125232; T=6 = A125233; T=7 = A125234, T=8 = A125235; and so on). For example, 3rd diagonal from the right = the offset Eulerian numbers, (1, 4, 11, 26, 57, 120, ...) = row sums of Triangle A104712 having partial column sums of the triangular numbers: 1; 3, 1; 6, 4, 1; 10, 10, 5, 1; 15, 20, 15, 6, 1; ... Row sums = A124671: (1, 3, 7, 16, 37, 85, 191, ...).

Examples

			First few rows of the triangle:
  1;
  1,  2;
  1,  3,  3;
  1,  4,  7,  4;
  1,  5, 11, 15,   5;
  1,  6, 15, 26,  31,   6;
  1,  7, 19, 37,  57,  63,   7;
  1,  8, 23, 48,  83, 120, 127,   8;
  1,  9, 27, 59, 109, 177, 247, 255,   9;
  1, 10, 31, 70, 135, 234, 367, 502, 511, 10;
  ...
T(7,4) = 37 = A000295(4) + T(6,4) = 11 + 26.
		

Crossrefs

Programs

  • Mathematica
    T[n_,1]:=1; T[n_,n_]:=n; T[n_,k_]:= T[n-1,k] + 2^k - k - 1; Table[T[n,k], {n,1,15}, {k,1,n}]//Flatten (* G. C. Greubel, Oct 23 2018 *)
  • PARI
    {T(n,k) = if(k==1, 1, if(k==n, n, 2^k - k - 1 + T(n-1,k)))};
    for(n=1,10, for(k=1,n, print1(T(n,k), ", "))) \\ G. C. Greubel, Oct 23 2018

Formula

Given right border = (1,2,3,...), T(n,k) = A000295(k) + T(n-1,k); where A000295 = the Eulerian numbers starting (0, 1, 4, 11, 26, 57, ...).

A125235 Triangle with the partial column sums of the octagonal numbers.

Original entry on oeis.org

1, 8, 1, 21, 9, 1, 40, 30, 10, 1, 65, 70, 40, 11, 1, 96, 135, 110, 51, 12, 1, 133, 231, 245, 161, 63, 13, 1, 176, 364, 476, 406, 224, 76, 14, 1, 225, 540, 840, 882, 630, 300, 90, 15, 1, 280, 765, 1380, 1722, 1512, 930, 390, 105, 16, 1
Offset: 1

Views

Author

Gary W. Adamson, Nov 24 2006

Keywords

Comments

"Partial column sums" means the octagonal numbers are the 1st column, the 2nd column are the partial sums of the 1st column, the 3rd column are the partial sums of the 2nd, etc.
Row sums are 1, 9, 31, 81, 187, 405, 847 = 7*(2^n-1) - 6*n. - R. J. Mathar, Sep 06 2011

Examples

			First few rows of the triangle:
   1;
   8,   1;
  21,   9,   1;
  40,  30,  10,   1;
  65,  70,  40,  11,   1;
  96, 135, 110,  51,  12,   1;
  ...
		

References

  • Albert H. Beiler, Recreations in the Theory of Numbers, Dover (1966), p. 189.

Crossrefs

Programs

  • PARI
    t(n, k) = if (n <0, 0, if (k==1, n*(3*n-2), if (k > 1, t(n-1,k-1) + t(n-1,k))));
    tabl(nn) = {for (n = 1, nn, for (k = 1, n, print1(t(n, k), ", ");); print(););} \\ Michel Marcus, Mar 04 2014

Formula

T(n,1) = A000567(n).
T(n,k) = T(n-1,k-1) + T(n-1,k), k>1.
T(n,2) = A002414(n-1).
T(n,3) = A002419(n-2).
T(n,4) = A051843(n-4).
T(n,5) = A027810(n-6).

Extensions

More terms from Michel Marcus, Mar 04 2014
Showing 1-2 of 2 results.