A125234 Triangle T(n,k) read by rows: the k-th column contains the k-fold iterated partial sum of A000566.
1, 7, 1, 18, 8, 1, 34, 26, 9, 1, 55, 60, 35, 10, 1, 81, 115, 95, 45, 11, 1, 112, 196, 210, 140, 56, 12, 1, 148, 308, 406, 350, 196, 68, 13, 1, 189, 456, 714, 756, 546, 264, 81, 14, 1, 235, 645, 1170, 1470, 1302, 810, 345, 95, 15, 1, 286, 880, 1815, 2640, 2772, 2112, 1155, 440, 110, 16, 1
Offset: 1
Examples
First few rows of the triangle are: 1; 7, 1; 18, 8, 1; 34, 26, 9, 1; 55, 60, 35, 10, 1; 81, 115, 95, 45, 11, 1; 112, 196, 210, 140, 56, 12, 1; Example: T(6,2) = 95 = 35 + 60 = T(5,2) + T(5,1).
References
- Albert H. Beiler, Recreations in the Theory of Numbers, Dover, 1966, p. 189.
Crossrefs
Programs
-
Maple
A000566 := proc(n) n*(5*n-3)/2 ; end: A125234 := proc(n,k) if k = 0 then A000566(n); elif k>= n then 0 ; else procname(n-1,k-1)+procname(n-1,k) ; fi; end: seq(seq(A125234(n,k),k=0..n-1),n=1..16) ; # R. J. Mathar, Sep 09 2009
-
Mathematica
A000566[n_] := n(5n-3)/2; T[n_, k_] := Which[k == 0, A000566[n], k >= n, 0, True, T[n-1, k-1] + T[n-1, k] ]; Table[Table[T[n, k], {k, 0, n-1}], {n, 1, 11}] // Flatten (* Jean-François Alcover, Oct 26 2023, after R. J. Mathar *)
Formula
T(n,0) = A000566(n). T(n,k) = T(n-1,k) + T(n-1,k-1), k>0.
Extensions
Edited and extended by R. J. Mathar, Sep 09 2009
Comments