cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A186720 As p runs through the primes, sequence gives denominator of Sum_{k=1..p-1} 1/k^2.

Original entry on oeis.org

1, 4, 144, 3600, 1270080, 153679680, 519437318400, 150117385017600, 221193371393280, 6450247552370862240000, 5424658191543895143840000, 20852386088294732932920960000, 28546916554875489385168794240000, 6855338104106528236638391873920000, 12675520154492970709544386574878080000
Offset: 1

Views

Author

N. J. A. Sloane, Jan 21 2012

Keywords

References

  • Paulo Ribenboim, The Little Book of Bigger Primes, Springer-Verlag NY 2004. See pp. 22-23.

Crossrefs

Programs

  • Maple
    f2:=proc(n) local p;
    p:=ithprime(n);
    denom(add(1/i^2,i=1..p-1));
    end proc;
    [seq(f2(n),n=1..20)];
  • Mathematica
    a[n_] := HarmonicNumber[Prime[n] - 1, 2] // Denominator;
    Array[a, 15] (* Jean-François Alcover, Nov 25 2017 *)

A186722 a(n) = numerator of Sum_{k=1..p-1} 1/k^2 for p the n-th prime.

Original entry on oeis.org

1, 5, 205, 5369, 1968329, 240505109, 822968714749, 238820721143261, 354019312583809, 10383930672892966877209, 8745363341445960333910369, 33729537728506506466441425661, 46252969210499754415427421586309, 11115284554577186575391010113969347, 20577813589884143264711540636313749803
Offset: 1

Views

Author

N. J. A. Sloane, Jan 21 2012

Keywords

References

  • Paulo Ribenboim, The Little Book of Bigger Primes, Springer-Verlag NY 2004. See pp. 22-23.

Crossrefs

Programs

  • Maple
    f3:=proc(n) local p;
    p:=ithprime(n);
    numer(add(1/i^2,i=1..p-1));
    end proc;
    [seq(f3(n),n=1..20)];
  • Mathematica
    Table[Numerator[HarmonicNumber[Prime[n]-1, 2]], {n, 1, 15}] (* Jean-François Alcover, Nov 29 2017 *)
  • PARI
    a(n) = my(p=prime(n)); numerator(sum(k=1, p-1, 1/k^2)); \\ Michel Marcus, Apr 05 2015
Showing 1-2 of 2 results.