A125601 a(n) is the smallest k > 0 such that there are exactly n numbers whose sum of proper divisors is k.
2, 3, 6, 21, 37, 31, 49, 79, 73, 91, 115, 127, 151, 121, 181, 169, 217, 265, 253, 271, 211, 301, 433, 379, 331, 361, 457, 391, 451, 655, 463, 541, 421, 775, 511, 769, 673, 715, 865, 691, 1015, 631, 1069, 1075, 721, 931, 781, 1123, 871, 925, 901, 1177, 991, 1297
Offset: 0
Keywords
Examples
a(4) = 37 since there are exactly four numbers (155, 203, 299, 323) whose sum of proper divisors is 37. For k < 37 there are either fewer or more numbers (32, 125, 161, 209, 221 for k = 31) whose sum of proper divisors is k.
Links
- Daniel Mondot, Table of n, a(n) for n = 0..5646 (First 157 terms from Ophir Spector. First 1000 terms from Ophir Spector and Donovan Johnson.)
- W. Creyaufmueller, Aliquot sequences
- Daniel Mondot, A-file, extended version of b-file but with some gaps towards the end.
- J. O. M. Pedersen, Tables of Aliquot Cycles [Broken link]
- J. O. M. Pedersen, Tables of Aliquot Cycles [Via Internet Archive Wayback-Machine]
- J. O. M. Pedersen, Tables of Aliquot Cycles [Cached copy, pdf file only]
- Eric Weisstein's World of Mathematics, Aliquot sequence
Crossrefs
Programs
-
PARI
{m=54;z=1500;y=600000;v=vector(z);for(n=2,y,s=sigma(n)-n; if(s
Comments