A125615 Sum of the quadratic nonresidues of prime(n).
0, 2, 5, 14, 33, 39, 68, 95, 161, 203, 279, 333, 410, 473, 658, 689, 944, 915, 1139, 1491, 1314, 1738, 1826, 1958, 2328, 2525, 2884, 2996, 2943, 3164, 4318, 4585, 4658, 5004, 5513, 6191, 6123, 6683, 7849, 7439, 8413, 8145, 10314, 9264, 9653, 10746, 11394
Offset: 1
Examples
The quadratic nonresidues of 7=prime(4) are 3, 5 and 6. Hence a(4) = 3+5+6 = 14.
References
- D. M. Burton, Elementary Number Theory, McGraw-Hill, Sixth Edition (2007), p. 185.
Links
- Nick Hobson, Table of n, a(n) for n = 1..1000
- Christian Aebi and Grant Cairns. Sums of Quadratic residues and nonresidues, arXiv preprint arXiv:1512.00896 [math.NT], 2015.
Crossrefs
Programs
-
Mathematica
Table[p=Prime[n];Total[Complement[Range[p-1],Union[Table[PowerMod[k, 2, p], {k, p}]]]],{n,47}] (* James C. McMahon, Dec 19 2024 *)
-
PARI
vector(47, n, p=prime(n); t=1; for(i=2, (p-1)/2, t+=((i^2)%p)); p*(p-1)/2-t)
Formula
If prime(n) = 4k+1 then a(n) = k(4k+1) = A076409(n).
Comments