cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A125615 Sum of the quadratic nonresidues of prime(n).

Original entry on oeis.org

0, 2, 5, 14, 33, 39, 68, 95, 161, 203, 279, 333, 410, 473, 658, 689, 944, 915, 1139, 1491, 1314, 1738, 1826, 1958, 2328, 2525, 2884, 2996, 2943, 3164, 4318, 4585, 4658, 5004, 5513, 6191, 6123, 6683, 7849, 7439, 8413, 8145, 10314, 9264, 9653, 10746, 11394
Offset: 1

Views

Author

Nick Hobson, Nov 30 2006

Keywords

Comments

For all n > 2, prime(n) divides a(n).

Examples

			The quadratic nonresidues of 7=prime(4) are 3, 5 and 6. Hence a(4) = 3+5+6 = 14.
		

References

  • D. M. Burton, Elementary Number Theory, McGraw-Hill, Sixth Edition (2007), p. 185.

Crossrefs

Sums of residues, nonresidues, and their differences, for p == 1 (mod 4), p == 3 (mod 4), and all p: A171555; A282035, A282036, A282037; A076409, A125615, A282038.

Programs

  • Mathematica
    Table[p=Prime[n];Total[Complement[Range[p-1],Union[Table[PowerMod[k, 2, p], {k, p}]]]],{n,47}] (* James C. McMahon, Dec 19 2024 *)
  • PARI
    vector(47, n, p=prime(n); t=1; for(i=2, (p-1)/2, t+=((i^2)%p)); p*(p-1)/2-t)

Formula

If prime(n) = 4k+1 then a(n) = k(4k+1) = A076409(n).