cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A076409 Sum of the quadratic residues of prime(n).

Original entry on oeis.org

1, 1, 5, 7, 22, 39, 68, 76, 92, 203, 186, 333, 410, 430, 423, 689, 767, 915, 1072, 994, 1314, 1343, 1577, 1958, 2328, 2525, 2369, 2675, 2943, 3164, 3683, 3930, 4658, 4587, 5513, 5134, 6123, 6520, 6012, 7439, 7518, 8145, 7831, 9264, 9653, 8955, 10761, 11596
Offset: 1

Views

Author

R. K. Guy, Oct 08 2002

Keywords

Comments

Row sums of A063987. - R. J. Mathar, Jan 08 2015
prime(n) divides a(n) for n > 2. This is implied by a variant of Wolstenholme's theorem (see Hardy & Wright reference). - Isaac Saffold, Jun 21 2018

Examples

			If n = 3, then p = 5 and a(3) = 1 + 4 = 5. If n = 4, then p = 7 and a(4) = 1 + 4 + 2 = 7. If n = 5, then p = 11 and a(5) = 1 + 4 + 9 + 5 + 3 = 22. - _Michael Somos_, Jul 01 2018
		

References

  • G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers. 4th ed., Oxford Univ. Press, 1960, p. 88-90.
  • Kenneth A. Ribet, Modular forms and Diophantine questions, Challenges for the 21st century (Singapore 2000), 162-182; World Sci. Publishing, River Edge NJ 2001; Math. Rev. 2002i:11030.

Crossrefs

Cf. A076410.
Sums of residues, nonresidues, and their differences, for p == 1 mod 4, p == 3 mod 4, and all p: A171555; A282035, A282036, A282037; A076409, A125615, A282038.

Programs

  • Maple
    A076409 := proc(n)
      local a,p,i ;
      p := ithprime(n) ;
      a := 0 ;
      for i from 1 to p-1 do
        if numtheory[legendre](i,p) = 1 then
           a := a+i ;
        end if;
      end do;
      a ;
    end proc: # R. J. Mathar, Feb 26 2011
  • Mathematica
    Join[{1,1}, Table[ Apply[ Plus, Flatten[ Position[ Table[ JacobiSymbol[i, Prime[n]], {i, 1, Prime[n] - 1}], 1]]], {n, 3, 48}]]
    Join[{1}, Table[p=Prime[n]; If[Mod[p,4]==1, p(p-1)/4, Sum[PowerMod[k,2, p],{k,p/2}]], {n,2,1000}]] (* Zak Seidov, Nov 02 2011 *)
    a[ n_] := If[ n < 3, Boole[n > 0], With[{p = Prime[n]}, Sum[ Mod[k^2, p], {k, (p - 1)/2}]]]; (* Michael Somos, Jul 01 2018 *)
  • PARI
    a(n,p=prime(n))=if(p<5,return(1)); if(k%4==1, return(p\4*p)); sum(k=1,p-1,k^2%p) \\ Charles R Greathouse IV, Feb 21 2017

Formula

If prime(n) = 4k+1 then a(n) = k*(4k+1).
For n>2 if prime(n) = 4k+3 then a(n) = (k - b)*(4k+3) where b = (h(-p) - 1) / 2; h(-p) = A002143. For instance. If n=5, p=11, k=2, b=(1-1)/2=0 and a(5) = 2*11 = 22. If n=20, p=71, k=17, b=(7-1)/2=3 and a(20) = 14*71 = 994. - Andrés Ventas, Mar 01 2021

Extensions

Edited and extended by Robert G. Wilson v, Oct 09 2002

A282035 Sum of quadratic residues of (n-th prime == 3 mod 4).

Original entry on oeis.org

1, 7, 22, 76, 92, 186, 430, 423, 767, 1072, 994, 1343, 1577, 2369, 2675, 3683, 3930, 4587, 5134, 6520, 6012, 7518, 7831, 8955, 10761, 11596, 12258, 12428, 14809, 15517, 16802, 19527, 23025, 21148, 26811, 29148, 28720, 31929, 35247, 33321, 41900, 41807, 44778, 47844, 51856, 52771, 51253, 57466
Offset: 1

Views

Author

N. J. A. Sloane, Feb 20 2017

Keywords

Crossrefs

Sums of residues, nonresidues, and their differences, for p == 1 mod 4, p == 3 mod 4, and all p: A171555; A282035, A282036, A282037; A076409, A125615, A282038.

Programs

  • Maple
    with(numtheory):
    a:=[]; m:=[]; d:=[];
    for i1 from 1 to 200 do
    p:=ithprime(i1);
    if (p mod 4) = 3 then
    sp:=0; sm:=0;
    for j from 1 to p-1 do
    if legendre(j,p)=1 then sp:=sp+j; else sm:=sm+j; fi; od;
    a:=[op(a),sp]; m:=[op(m),sm]; d:=[op(d),sm-sp];
    fi;
    od:
    a; m; d; # A282035, A282036, A282037
  • Mathematica
    Table[Table[Mod[a^2, p], {a, 1, (p-1)/2}]//Total, {p, Select[Prime[Range[100]], Mod[#, 4]==3 &]}] (* Vincenzo Librandi, Feb 21 2017 *)
    Table[Total[PowerMod[#,2,n]&/@Range[n/2]],{n,Select[Prime[Range[100]],Mod[#,4]==3&]}] (* Harvey P. Dale, Dec 11 2024 *)
  • PARI
    do(p)=sum(k=1,p-1,k^2%p)/2
    apply(do, select(p->p%4==3, primes(100))) \\ Charles R Greathouse IV, Feb 21 2017

A171555 Numbers of the form prime(n)*(prime(n)-1)/4.

Original entry on oeis.org

5, 39, 68, 203, 333, 410, 689, 915, 1314, 1958, 2328, 2525, 2943, 3164, 4658, 5513, 6123, 7439, 8145, 9264, 9653, 13053, 13514, 14460, 16448, 18023, 19113, 19670, 21389, 24414, 25043, 28308, 30363, 31064, 34689, 37733, 39303, 40100, 41718, 44205, 46764, 50288
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Dec 11 2009

Keywords

Comments

The halves of even numbers of the form p(p-1)/2 for p prime.
Sum of the quadratic residues of primes of the form 4k + 1. For example, a(3)=68 because 17 is the 3rd prime of the form 4k + 1 and the quadratic residues of 17 are 1, 4, 9, 16, 8, 2, 15, 13 which sum to 68. This sum is also the sum of the quadratic nonresidues. Cf. A230077. - Geoffrey Critzer, May 07 2015

References

  • R. Crandall and C. Pomerance, Prime Numbers: A Computational Perspective, Springer, NY, 2001; see Exercise 2.21 p. 110.

Crossrefs

Sums of residues, nonresidues, and their differences, for p == 1 (mod 4), p == 3 (mod 4), and all p: A171555; A282035, A282036, A282037; A076409, A125615, A282038.

Programs

  • Mathematica
    Table[Table[Mod[a^2, p], {a, 1, (p - 1)/2}] // Total, {p,
    Select[Prime[Range[100]], Mod[#, 4] == 1 &]}] (* Geoffrey Critzer, May 07 2015 *)
    Select[(# (#-1))/4&/@Prime[Range[100]],IntegerQ] (* Harvey P. Dale, Dec 24 2022 *)
  • PARI
    lista(nn) = forprime(p=2, nn, if ((p % 4)==1, print1(p*(p-1)/4, ", "))); \\ Michel Marcus, Mar 23 2016

Extensions

Corrected (16448 inserted, 25043 inserted) by R. J. Mathar, May 22 2010

A282036 a(n) is the sum of quadratic nonresidues of A002145(n) (the n-th prime == 3 mod 4).

Original entry on oeis.org

2, 14, 33, 95, 161, 279, 473, 658, 944, 1139, 1491, 1738, 1826, 2884, 2996, 4318, 4585, 5004, 6191, 6683, 7849, 8413, 10314, 10746, 11394, 13157, 13393, 16013, 16566, 18936, 19783, 20376, 23946, 27057, 27804, 30883, 35541, 35232, 36384, 39832, 45671, 50858, 51363, 50059, 55097, 56040
Offset: 1

Views

Author

N. J. A. Sloane, Feb 20 2017

Keywords

Crossrefs

Sums of residues, nonresidues, and their differences, for p == 1 mod 4, p == 3 mod 4, and all p: A171555; A282035, A282036, A282037; A076409, A125615, A282038.
Cf. A002145.

Programs

  • Maple
    with(numtheory):
    a:=[]; m:=[]; d:=[];
    for i1 from 1 to 200 do
    p:=ithprime(i1);
    if (p mod 4) = 3 then
    sp:=0; sm:=0;
    for j from 1 to p-1 do
    if legendre(j,p)=1 then sp:=sp+j; else sm:=sm+j; fi; od;
    a:=[op(a),sp]; m:=[op(m),sm]; d:=[op(d),sm-sp];
    fi;
    od:
    a; m; d; # A282035, A282036, A282037
    # Alternative:
    f:= p -> add(-k^2 mod p, k=1..(p-1)/2)::
    map(f, select(isprime, [seq(p,p=3..1000,4)])); # Robert Israel, Nov 09 2020
  • Mathematica
    f[p_] := Total[Range[p-1] ~Complement~ Table[Mod[k^2, p], {k, (p-1)/2}] ]; f /@ Select[Range[3, 1000, 4], PrimeQ] (* Jean-François Alcover, Feb 16 2018, after Robert Israel *)
  • PARI
    lista(nn) = forprime(p=2, nn, if(p%4==3, print1(sum(k=1, p-1, if (!issquare(Mod(k, p)), k)), ", "))); \\ Michel Marcus, Nov 09 2020

Formula

a(n) = Sum_{k=1..(A002145(n)-1)/2} (-k^2) mod A002145(n). - J. M. Bergot and Robert Israel, Nov 09 2020

A282037 Let p = n-th prime == 3 mod 4; a(n) = (sum of quadratic nonresidues mod p) - (sum of quadratic residues mod p).

Original entry on oeis.org

1, 7, 11, 19, 69, 93, 43, 235, 177, 67, 497, 395, 249, 515, 321, 635, 655, 417, 1057, 163, 1837, 895, 2483, 1791, 633, 1561, 1135, 3585, 1757, 3419, 2981, 849, 921, 5909, 993, 1735, 6821, 3303, 1137, 6511, 3771, 9051, 6585, 2215, 3241, 3269, 11975, 3409, 4419, 1497, 10563, 2615, 1641, 5067, 2855
Offset: 1

Views

Author

N. J. A. Sloane, Feb 20 2017

Keywords

Comments

Equals A282036 - A282035.

Crossrefs

Sums of residues, nonresidues, and their differences, for p == 1 mod 4, p == 3 mod 4, and all p: A171555; A282035, A282036, A282037; A076409, A125615, A282038.

Programs

  • Maple
    with(numtheory):
    a:=[]; m:=[]; d:=[];
    for i1 from 1 to 200 do
    p:=ithprime(i1);
    if (p mod 4) = 3 then
    sp:=0; sm:=0;
    for j from 1 to p-1 do
    if legendre(j,p)=1 then sp:=sp+j; else sm:=sm+j; fi; od;
    a:=[op(a),sp]; m:=[op(m),sm]; d:=[op(d),sm-sp];
    fi;
    od:
    a; m; d; # A282035, A282036, A282037
  • Mathematica
    sum[p_] := Total[If[JacobiSymbol[#, p] == 1, -#, #]& /@ Range[p-1]];
    sum /@ Select[Prime[Range[200]], Mod[#, 4] == 3&] (* Jean-François Alcover, Aug 31 2018 *)

A282038 (Sum of the quadratic nonresidues of prime(n)) - (sum of the quadratic residues of prime(n)).

Original entry on oeis.org

-1, 1, 0, 7, 11, 0, 0, 19, 69, 0, 93, 0, 0, 43, 235, 0, 177, 0, 67, 497, 0, 395, 249, 0, 0, 0, 515, 321, 0, 0, 635, 655, 0, 417, 0, 1057, 0, 163, 1837, 0, 895, 0, 2483, 0, 0, 1791, 633, 1561, 1135, 0, 0, 3585, 0, 1757, 0, 3419, 0, 2981, 0, 0, 849, 0, 921, 5909, 0, 0, 993, 0, 1735, 0, 0, 6821, 3303, 0
Offset: 1

Views

Author

N. J. A. Sloane, Feb 20 2017

Keywords

Comments

Equals 0 if p == 1 (mod 4).

Crossrefs

Sums of residues, nonresidues, and their differences, for p == 1 (mod 4), p == 3 (mod 4), and all p: A171555; A282035, A282036, A282037; A076409, A125615, A282038.

Programs

  • Maple
    with(numtheory):
    a:=[]; m:=[]; d:=[];
    for i1 from 1 to 100 do
    p:=ithprime(i1);
    sp:=0; sm:=0;
    for j from 1 to p-1 do
    if legendre(j,p)=1 then sp:=sp+j; else sm:=sm+j; fi; od;
    a:=[op(a),sp]; m:=[op(m),sm]; d:=[op(d),sm-sp];
    od:
    a; m; d; # A076409, A125615, A282038
  • Mathematica
    sum[p_] := Total[If[JacobiSymbol[#, p] == 1, -#, #]& /@ Range[p-1]];
    a[n_] := sum[Prime[n]];
    Array[a, 100] (* Jean-François Alcover, Aug 31 2018 *)
  • PARI
    a(n) = my (p=prime(n)); return (sum(i=1, p-1, if (kronecker(i,p)==1, -i, +i))) \\ Rémy Sigrist, Apr 28 2017

A166406 a(n) = A166405(n)-A166100(n).

Original entry on oeis.org

-1, 1, 0, 7, -27, 11, 0, 30, 0, 19, 0, 69, -250, 9, 0, 93, 0, 70, 0, 156, 0, 43, 0, 235, -1029, 102, 0, 220, 0, 177, 0, 126, 0, 67, 0, 497, 0, 50, 0, 395, -2187, 249, 0, 522, 0, 182, 0, 760, 0, 0, 0, 515, 0, 321, 0, 888, 0, 230, 0, 1190, -6655, 246, 0, 635, 0, 655, 0
Offset: 0

Views

Author

Antti Karttunen, Oct 21 2009, Oct 22 2009

Keywords

Comments

Zeros occur at (A166409(k)-1)/2. The negative terms occur at positions given by A046092 (see the comment at A166040).
Sum of those positive i <= 2n+1, for which J(i,2n+1)=-1 minus sum of those positive i <= 2n+1, for which J(i,2n+1)=+1. Here J(i,k) is the Jacobi symbol.

Crossrefs

A125615(n)=a(A102781(n)). Cf. A166100, A166407-A166409. The cases where a(i)/A005408(i) is not integer seem also to be given by A166101.

Programs

  • Python
    from sympy import jacobi_symbol as J
    def a(n):
        l=0
        m=0
        for i in range(1, 2*n + 2):
            if J(i, 2*n + 1)==-1: l+=i
            elif J(i, 2*n + 1)==1: m+=i
        return l - m
    print([a(n) for n in range(101)]) # Indranil Ghosh, Jun 12 2017

A166405 Sum of those positive i <= 2n+1, for which J(i,2n+1)=-1. Here J(i,k) is the Jacobi symbol.

Original entry on oeis.org

0, 2, 5, 14, 0, 33, 39, 45, 68, 95, 63, 161, 0, 126, 203, 279, 165, 245, 333, 312, 410, 473, 270, 658, 0, 459, 689, 660, 513, 944, 915, 630, 780, 1139, 759, 1491, 1314, 775, 1155, 1738, 0, 1826, 1360, 1479, 1958, 1729, 1395, 2090, 2328, 1485, 2525, 2884
Offset: 0

Views

Author

Antti Karttunen, Oct 21 2009

Keywords

Examples

			For n=5, we get odd number 11 (2*5+1), and J(i,11) = 1,-1,1,1,1,-1,-1,-1,1,-1,0 when i ranges from 1 to 11, J(i,11) obtaining value -1 when i=2, 6, 7, 8 and 10, thus a(5)=33.
		

Crossrefs

A125615(n)=a(A102781(n)). Cf. A166100, A166406-A166408. The cases where a(i)/A005408(i) is not integer seem also to be given by A166101. This is NOT a bisection of A165898. Scheme-code for jacobi-symbol is given at A165601.

Programs

  • Mathematica
    Table[Total@ Select[Range[2n + 1], JacobiSymbol[#, 2n + 1]==-1 &], {n, 0, 100}] (* Indranil Ghosh, Jun 12 2017 *)
  • Python
    from sympy import jacobi_symbol as J
    def a(n): return sum(i for i in range(1, 2*n + 2) if J(i, 2*n + 1)==-1)
    # Indranil Ghosh, Jun 12 2017

A125616 (Sum of the quadratic nonresidues of prime(n)) / prime(n).

Original entry on oeis.org

1, 2, 3, 3, 4, 5, 7, 7, 9, 9, 10, 11, 14, 13, 16, 15, 17, 21, 18, 22, 22, 22, 24, 25, 28, 28, 27, 28, 34, 35, 34, 36, 37, 41, 39, 41, 47, 43, 47, 45, 54, 48, 49, 54, 54, 59, 59, 57, 58, 67, 60, 66, 64, 72, 67, 73, 69, 70, 72, 73, 78, 87, 78, 79, 84, 84, 89, 87, 88, 99, 96, 93, 96
Offset: 3

Views

Author

Nick Hobson, Nov 30 2006

Keywords

Comments

Always an integer for primes >= 5.

Examples

			The quadratic nonresidues of 7=prime(4) are 3, 5 and 6. Hence a(4) = (3+5+6)/7 = 2.
		

References

  • D. M. Burton, Elementary Number Theory, McGraw-Hill, Sixth Edition (2007), p. 185.

Crossrefs

Programs

  • Maple
    a:= proc(n) local p;
       p:= ithprime(n);
       convert(select(t->numtheory:-legendre(t,p)=-1, [$1..p-1]),`+`)/p;
    end proc:
    seq(a(n),n=3..100); # Robert Israel, May 10 2015
  • Mathematica
    Table[Total[Flatten[Position[Table[JacobiSymbol[a, p], {a, p - 1}], -1]]]/ p, {p, Prime[Range[3, 100]]}] (* Geoffrey Critzer, May 10 2015 *)
  • PARI
    vector(73, m, p=prime(m+2); t=1; for(i=2, (p-1)/2, t+=((i^2)%p)); (p-1)/2-t/p)

Formula

a(n) = A125615(n)/prime(n).
If prime(n) = 4k+1 then a(n) = k = A076410(n).

A177861 Product of the quadratic nonresidues of prime(n).

Original entry on oeis.org

1, 2, 6, 90, 6720, 36960, 11642400, 283046400, 2412984420000, 1140422816332800, 1226781977195174400, 1863152400854384640000, 5988092802221559085056000, 112886540292742916603904000, 158983195607776600998537600000000
Offset: 1

Views

Author

Jonathan Sondow, May 14 2010

Keywords

Comments

a(n) == (-1)^((p-1)/2) (mod p), if p = prime(n) is odd.

Examples

			The quadratic nonresidues of prime(4) = 7 are 3, 5, and 6, so a(4) = 3*5*6 = 90.
		

References

  • Carl-Erik Froeberg, On sums and products of quadratic residues, BIT, Nord. Tidskr. Inf.-behandl. 11 (1971) 389-398.

Crossrefs

A125615 Sum of the quadratic nonresidues of prime(n), A177860 Product of the quadratic residues of prime(n), A177863 Product of the quadratic nonresidues of prime(n) modulo prime(n).

Programs

  • Mathematica
    Table[ Apply[Times, Flatten[Position[ Table[JacobiSymbol[i, Prime[n]], {i, 1, Prime[n] - 1}], -1]]], {n, 1, 16}]

Formula

a(n) = (p-1)!/A177860(n), where p = prime(n).
Showing 1-10 of 10 results.