cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A166406 a(n) = A166405(n)-A166100(n).

Original entry on oeis.org

-1, 1, 0, 7, -27, 11, 0, 30, 0, 19, 0, 69, -250, 9, 0, 93, 0, 70, 0, 156, 0, 43, 0, 235, -1029, 102, 0, 220, 0, 177, 0, 126, 0, 67, 0, 497, 0, 50, 0, 395, -2187, 249, 0, 522, 0, 182, 0, 760, 0, 0, 0, 515, 0, 321, 0, 888, 0, 230, 0, 1190, -6655, 246, 0, 635, 0, 655, 0
Offset: 0

Views

Author

Antti Karttunen, Oct 21 2009, Oct 22 2009

Keywords

Comments

Zeros occur at (A166409(k)-1)/2. The negative terms occur at positions given by A046092 (see the comment at A166040).
Sum of those positive i <= 2n+1, for which J(i,2n+1)=-1 minus sum of those positive i <= 2n+1, for which J(i,2n+1)=+1. Here J(i,k) is the Jacobi symbol.

Crossrefs

A125615(n)=a(A102781(n)). Cf. A166100, A166407-A166409. The cases where a(i)/A005408(i) is not integer seem also to be given by A166101.

Programs

  • Python
    from sympy import jacobi_symbol as J
    def a(n):
        l=0
        m=0
        for i in range(1, 2*n + 2):
            if J(i, 2*n + 1)==-1: l+=i
            elif J(i, 2*n + 1)==1: m+=i
        return l - m
    print([a(n) for n in range(101)]) # Indranil Ghosh, Jun 12 2017

A166100 Sum of those positive i <= 2n+1, for which J(i,2n+1)=+1. Here J(i,k) is the Jacobi symbol.

Original entry on oeis.org

1, 1, 5, 7, 27, 22, 39, 15, 68, 76, 63, 92, 250, 117, 203, 186, 165, 175, 333, 156, 410, 430, 270, 423, 1029, 357, 689, 440, 513, 767, 915, 504, 780, 1072, 759, 994, 1314, 725, 1155, 1343, 2187, 1577, 1360, 957, 1958, 1547, 1395, 1330, 2328, 1485, 2525
Offset: 0

Views

Author

Antti Karttunen, Oct 13 2009. Erroneous name corrected Oct 20 2009

Keywords

Comments

Note that this sequence is not equal to the sum of the quadratic residues of 2n+1 in range [1,2n+1], and thus NOT a bisection of A165898.

Examples

			For n=5, we get odd number 11 (2*5+1), and J(i,11) = 1,-1,1,1,1,-1,-1,-1,1,-1,0 when i ranges from 1 to 11, J(i,11) getting value 1 when i=1, 3, 4, 5 and 9, thus a(5)=22.
		

Crossrefs

Scheme-code for jacobi-symbol is given at A165601.

Programs

  • Mathematica
    Table[Total[Flatten[Position[JacobiSymbol[Range[2n+1],2n+1],1]]],{n,0,50}] (* Harvey P. Dale, Jun 19 2013 *)
  • Python
    from sympy import jacobi_symbol as J
    def a(n): return sum([i for i in range(1, 2*n + 2) if J(i, 2*n + 1)==1]) # Indranil Ghosh, Jun 12 2017
Showing 1-2 of 2 results.