A125637 Smallest odd prime base q such that p^3 divides q^(p-1) - 1, where p = prime(n).
17, 53, 193, 19, 2663, 239, 653, 2819, 13931, 10133, 6287, 691, 10399, 3623, 6397, 9283, 63463, 38447, 36809, 21499, 75227, 1523, 55933, 42937, 341293, 4943, 255007, 5573, 56633, 262079, 94961, 33289, 65543, 298157, 218579, 25667, 411589, 253987
Offset: 1
Keywords
Links
- W. Keller and J. Richstein Fermat quotients that are divisible by p.
Crossrefs
Cf. A125636 = Smallest odd prime base q such that p^2 divides q^(p-1) - 1, where p = Prime[n]. Cf. A125609 = Smallest prime p such that 3^n divides p^2 - 1. Cf. A125610 = Smallest prime p such that 5^n divides p^4 - 1. Cf. A125611 = Smallest prime p such that 7^n divides p^6 - 1. Cf. A125612 = Smallest prime p such that 11^n divides p^10 - 1. Cf. A125632 = Smallest prime p such that 13^n divides p^12 - 1. Cf. A125633 = Smallest prime p such that 17^n divides p^16 - 1. Cf. A125634 = Smallest prime p such that 19^n divides p^18 - 1.