cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A125662 A convolution triangle of numbers based on A001906 (even-indexed Fibonacci numbers).

Original entry on oeis.org

1, 3, 1, 8, 6, 1, 21, 25, 9, 1, 55, 90, 51, 12, 1, 144, 300, 234, 86, 15, 1, 377, 954, 951, 480, 130, 18, 1, 987, 2939, 3573, 2305, 855, 183, 21, 1, 2584, 8850, 12707, 10008, 4740, 1386, 245, 24, 1, 6765, 26195, 43398, 40426, 23373, 8715, 2100, 316, 27, 1
Offset: 0

Views

Author

Philippe Deléham, Jan 28 2007

Keywords

Comments

Subtriangle of the triangle given by [0,3,-1/3,1/3,0,0,0,0,0,...] DELTA [1,0,0,0,0,0,...] where DELTA is the operator defined in A084938. Unsigned version of A123965.
From Philippe Deléham, Feb 19 2012: (Start)
Riordan array (1/(1-3*x+x^2), x/(1-3*x+x^2)).
Equals A078812*A007318 as infinite lower triangular matrices.
Triangle of coefficients of Chebyshev's S(n,x+3) polynomials (exponents of x in increasing order). (End)
For 1 <= k <= n, T(n,k) equals the number of (n-1)-length words over {0,1,2,3} containing k-1 letters equal 3 and avoiding 01. - Milan Janjic, Dec 20 2016

Examples

			Triangle begins:
   1;
   3,  1;
   8,  6,  1;
  21, 25,  9,  1;
  55, 90, 51, 12,  1;
  ...
Triangle [0,3,-1/3,1/3,0,0,0,...] DELTA [1,0,0,0,0,0,...] begins:
  1;
  0,  1;
  0,  3,  1;
  0,  8,  6,  1;
  0, 21, 25,  9,  1;
  0, 55, 90, 51, 12,  1;
  ...
		

Crossrefs

Diagonal sums: A000244(powers of 3).
Row sums: A001353 (n+1).
Diagonals: A001906(n+1), A001871.
Cf. Triangle of coefficients of Chebyshev's S(n,x+k) polynomials: A207824, A207823, A125662, A078812, A101950, A049310, A104562, A053122, A207815, A159764, A123967 for k = 5, 4, 3, 2, 1, 0, -1, -2, -3, -4, -5 respectively.

Programs

  • Magma
    m:=12;
    R:=PowerSeriesRing(Integers(), m+2);
    A125662:= func< n,k | Abs( Coefficient(R!( Evaluate(ChebyshevU(n+1), (3-x)/2) ), k) ) >;
    [A125662(n,k): k in [0..n], n in [0..m]]; // G. C. Greubel, Aug 20 2023
    
  • Mathematica
    With[{n = 9}, DeleteCases[#, 0] & /@ CoefficientList[Series[1/(1 - 3 x + x^2 - y x), {x, 0, n}, {y, 0, n}], {x, y}]] // Flatten (* Michael De Vlieger, Apr 25 2018 *)
    Table[Abs[CoefficientList[ChebyshevU[n,(x-3)/2], x]], {n,0,12}]//Flatten (* G. C. Greubel, Aug 20 2023 *)
  • SageMath
    def A125662(n,k): return abs( ( chebyshev_U(n, (3-x)/2) ).series(x, n+2).list()[k] )
    flatten([[A125662(n,k) for k in range(n+1)] for n in range(13)]) # G. C. Greubel, Aug 20 2023

Formula

T(n,k) = T(n-1,k-1) + 3*T(n-1,k) - T(n-2,k); T(0,0)=1; T(n,k)=0 if k < 0 or k > n.
Sum_{k=0..n} T(n, k) = A001353(n+1).
Sum_{k=0..floor(n/2)} T(n-k, k) = A000244(n+1).
G.f.: 1/(1-3*x+x^2-y*x). - Philippe Deléham, Feb 19 2012
From G. C. Greubel, Aug 20 2023: (Start)
T(n, k) = abs( [x^k]( ChebyshevU(n, (3-x)/2) ) ).
Sum_{k=0..n} (-1)^k*T(n, k) = A000027(n+1).
Sum_{k=0..floor(n/2)} (-1)^k*T(n-k, k) = A000225(n). (End)

Extensions

a(45) corrected and a(51) added by Philippe Deléham, Feb 19 2012