A125666 Table read by ascending antidiagonals: n-th row of table consists of the positive integers divisible by exactly n distinct primes.
2, 6, 3, 30, 10, 4, 210, 42, 12, 5, 2310, 330, 60, 14, 7, 30030, 2730, 390, 66, 15, 8, 510510, 39270, 3570, 420, 70, 18, 9, 9699690, 570570, 43890, 3990, 462, 78, 20, 11, 223092870, 11741730, 690690, 46410, 4290, 510, 84, 21, 13, 6469693230, 281291010
Offset: 1
Examples
The table begins: n\k| 1 2 3 4 5 6 ... ---+------------------------------------- 1 | 2, 3, 4, 5, 7, 8, ... 2 | 6, 10, 12, 14, 15, ... 3 | 30, 42, 60, 66, ... 4 | 210, 330, 390, ... 5 | 2310, 2730, ... 6 | 30030, ... ...| ...
Crossrefs
Programs
-
Mathematica
f[n_, m_] := f[n, m] = Block[{c = m, k = If[m == 1, Product[Prime[i], {i, n}], f[n, m - 1] + 1]},While[Length@FactorInteger[k] != n, k++ ];k];Table[f[d - m + 1, m], {d, 10}, {m, d}] // Flatten (* Ray Chandler, Feb 08 2007 *)
-
PARI
A125666(n, k=0)={if(k, for(m=vecprod(primes(n)), oo, omega(m)!=n || k-- || return(m)), A125666(A004736(n), A002260(n)))} \\ M. F. Hasler, Jun 06 2024
Extensions
Extended by Ray Chandler, Feb 08 2007
Comments