A125669 Number of bicyclic skeletons with n carbon atoms and the parameter 'alpha' having the value of 0. See the paper by Hendrickson and Parks for details.
1, 4, 20, 76, 288, 1005, 3433, 11324, 36712, 116809, 367076, 1140226, 3510491, 10722708, 32539364, 98178211, 294767639, 881147521, 2623934079, 7787024985, 23039064263, 67977412951, 200072442611, 587532484513, 1721812143140, 5036454320102, 14706743476128
Offset: 6
Keywords
Examples
If n=6 then the number of bicyclics when 'alpha' = zero is 1. If n=7 then the number of bicyclics when 'alpha' = zero is 4. If n=8 then the number of bicyclics when 'alpha' = zero is 20. If n=9 then the number of bicyclics when 'alpha' = zero is 76. From _Andrew Howroyd_, May 25 2018: (Start) Case n=7: illustrations of the 4 graphs: o o o o o o o o---o o o---o / \ / \ / \ / \ / / \ / \ / \ / \ \ \ o---o o---o o---o---o---o o---o---o---o o---o---o---o (End)
Links
- Andrew Howroyd, Table of n, a(n) for n = 6..200
- J. B. Hendrickson and C. A. Parks, Generation and Enumeration of Carbon skeletons, J. Chem. Inf. Comput. Sci., 31 (1991), pp. 101-107. See Table VII column 2 on page 104.
Programs
-
PARI
\\ here G is A000598 as series G(n)={my(g=O(x)); for(n=1, n, g = 1 + x*(g^3/6 + subst(g, x, x^2)*g/2 + subst(g, x, x^3)/3) + O(x^n)); g} C1(n)={sum(i=1, n\2-1, sum(j=1, n\2-i, (d1^(2*(i+j)) + 2*d1^(2*i)*d2^j + d2^(i+j))*(1 + d1)^2))/(8*(1-d1))} C2(n)={sum(k=1, n\4, 2*(d2^(2*k) + d4^k)*(1 + d2))*(1+d1)/(8*(1-d2))} seq(n)={my(s=G(n)); my(d=x*(s^2+subst(s, x, x^2))/2); my(g(p,e)=subst(p + O(x*x^(n\e)), x, x^e)); Vec(O(x^n/x) + g(s,1)^2*substvec(C1(n-2),[d1,d2],[g(d,1),g(d,2)]) + g(s,2)*substvec(C2(n-2), [d1,d2,d4], [g(d,1),g(d,2),g(d,4)]))} \\ Andrew Howroyd, May 25 2018
Extensions
Terms a(16) and beyond from Andrew Howroyd, May 25 2018
Comments