cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A125693 Riordan array ((1-x)/(1-3*x), x*(1-x)/(1-3*x)).

Original entry on oeis.org

1, 2, 1, 6, 4, 1, 18, 16, 6, 1, 54, 60, 30, 8, 1, 162, 216, 134, 48, 10, 1, 486, 756, 558, 248, 70, 12, 1, 1458, 2592, 2214, 1168, 410, 96, 14, 1, 4374, 8748, 8478, 5160, 2150, 628, 126, 16, 1, 13122, 29160, 31590, 21744, 10442, 3624, 910, 160, 18, 1
Offset: 0

Views

Author

Paul Barry, Nov 30 2006

Keywords

Comments

Row sums are A001835(n+1). Diagonal sums are A030186. Inverse is A125694. Equal to product of A007318 and A073370.

Examples

			Triangle begins
    1;
    2,   1;
    6,   4,   1;
   18,  16,   6,  1;
   54,  60,  30,  8,  1;
  162, 216, 134, 48, 10, 1;
		

Programs

  • GAP
    Flat(List([0..10], n-> List([0..n], k-> Sum([0..n], j->
    (-1)^j*3^(n-k-j)*Binomial(k+1,j)*Binomial(n-j, n-k-j) )))); # G. C. Greubel, Oct 28 2019
  • Magma
    T:= func< n,k | &+[(-1)^j*3^(n-k-j)*Binomial(k+1,j)*Binomial(n-j, n-k-j): j in [0..n]] >;
    [T(n,k): k in [0..n], n in [0..10]]; // G. C. Greubel, Oct 28 2019
    
  • Maple
    seq(seq( add( (-1)^j*3^(n-k-j)*binomial(k+1,j)*binomial(n-j, n-k-j), j=0..n), k=0..n), n=0..10); # G. C. Greubel, Oct 28 2019
  • Mathematica
    T[0, 0]=1; T[1, 0]=2; T[1, 1]=1; T[n_, k_]/; 0<=k<=n:= T[n, k]= 3T[n-1, k] + T[n-1, k-1] - T[n-2, k-1]; T[, ]=0; Table[T[n, k], {n, 0, 9}, {k, 0, n}] (* Jean-François Alcover, Jun 13 2019 *)
    T[n_, k_]:= Sum[(-1)^j*3^(n-k-j)*Binomial[k+1,j]*Binomial[n-j,n-k-j], {j, 0, n}]; Table[T[n, k], {n,0,10}, {k,0,n}]//Flatten (* G. C. Greubel, Oct 28 2019 *)
  • PARI
    T(n,k) = sum(j=0,n, (-1)^j*3^(n-k-j)*binomial(k+1,j)*binomial(n-j, n-k-j));
    for(n=0,10, for(k=0,n, print1(T(n,k), ", "))) \\ G. C. Greubel, Oct 28 2019
    
  • Sage
    [[sum( (-1)^j*3^(n-k-j)*binomial(k+1,j)*binomial(n-j, n-k-j) for j in (0..n) ) for k in (0..n)] for n in (0..10)] # G. C. Greubel, Oct 28 2019
    

Formula

Number triangle T(n,k) = Sum_{j=0..k+1} C(k+1,j)*C(n-j,n-k-j)* (-1)^j * 3^(n-k-j).
T(n,k) = 3*T(n-1,k) + T(n-1,k-1) - T(n-2,k-1), T(0,0)=1, T(1,0)=2, T(1,1)=1, T(n,k)=0 if k>n or if kPhilippe Deléham, Jan 08 2013