A125715 a(1)=1. a(n) = the smallest positive integer not occurring earlier in the sequence such that (sum{k=1 to n-1} a(k)) is congruent to a(n) (mod n).
1, 3, 4, 8, 6, 10, 11, 19, 17, 9, 22, 2, 21, 7, 5, 33, 25, 23, 36, 42, 31, 27, 40, 18, 20, 24, 32, 48, 51, 55, 30, 72, 26, 64, 37, 15, 43, 63, 103, 143, 16, 44, 59, 45, 60, 90, 56, 80, 79, 75, 14, 96, 52, 68, 100, 108, 65, 91, 84, 128, 94, 146, 61, 13, 110, 176, 107, 99, 12, 114
Offset: 1
Keywords
Links
- Ferenc Adorjan, Table of n,a(n) for n=1,10000
- Ferenc Adorjan, Some characteristics of _Leroy Quet_'s permutation sequences
Programs
-
Mathematica
f[l_List] := Block[{n = Length[l] + 1, k = Mod[Plus @@ l, n, 1]},While[MemberQ[l, k], k += n];Append[l, k]];Nest[f, {1}, 70] (* Ray Chandler, Feb 04 2007 *)
-
PARI
{Quet_p1(n)=/* Permutation sequence a'la Leroy Quet, A125715 */local(x=[1],s=1,k=0,w=1); for(i=2,n,if((k=s%i)==0,k=i);while(bittest(w,k-1)>0,k+=i);x=concat(x,k);s+=k;w+=2^(k-1));return(x)}
Extensions
Extended by Ray Chandler, Feb 04 2007
Comments