A125718 a(1)=1. a(n) = the smallest positive integer not occurring earlier in the sequence such that the n-th prime is congruent to a(n) (mod n).
1, 3, 2, 7, 6, 13, 10, 11, 5, 9, 20, 25, 15, 29, 17, 21, 8, 43, 48, 31, 52, 35, 14, 41, 22, 23, 49, 51, 80, 53, 34, 67, 38, 37, 44, 79, 46, 87, 50, 93, 56, 55, 19, 61, 62, 107, 70, 127, 129, 179, 131, 83, 82, 89, 92, 39, 98, 97, 100, 101, 161, 45, 118, 119, 183, 185, 63, 65
Offset: 1
Keywords
Links
- Ferenc Adorjan, Table of n,a(n) for n=1,10000
- Ferenc Adorjan, Some characteristics of _Leroy Quet_'s permutation sequences
- Ferenc Adorjan, More about the structure of _Leroy Quet_'s sequences A125715, A125717, A125718 & A125727
Crossrefs
Cf. A004648.
Programs
-
Mathematica
f[l_List] := Block[{n = Length[l] + 1, k = Mod[Prime[n], n, 1]},While[MemberQ[l, k], k += n];Append[l, k]];Nest[f, {1}, 70] (* Ray Chandler, Feb 04 2007 *)
-
PARI
{Quet_p3(n)= /* Permutation sequence a'la Leroy Quet, A125718 */local(x=[1],k=0,w=1); for(i=2,n,if((k=prime(i)%i)==0,k=i);while(bittest(w,k-1)>0,k+=i);x=concat(x,k);w+=2^(k-1));return(x)}
-
PARI
A125718(n,show=0,u=1)={for(n=1,n,p=prime(n)%n;while(bittest(u,p),p+=n);u+=1<
Extensions
Extended by Ray Chandler, Feb 04 2007
Comments