A125740 Numbers n such that A117731(n) differs from A082687(n).
14, 52, 98, 105, 111, 114, 119, 164, 310, 444, 518, 602, 676, 686, 715, 735, 749, 833, 1220, 1278, 1339, 1474, 1752, 1946, 2023, 2054, 2166, 3016, 3104, 3502, 3568, 3924, 4107, 4308, 4802, 5145, 5243, 5334, 5718, 5831, 6394, 6724, 7550, 8135, 8164, 8767
Offset: 1
Keywords
Examples
A117731(n) begins {1, 7, 37, 533, 1627, 18107, 237371, 95549, 1632341, 155685007, 156188887, 3602044091, 18051406831, 54260455193, ...}. A082687(n) begins {1, 7, 37, 533, 1627, 18107, 237371, 95549, 1632341, 155685007, 156188887, 3602044091, 18051406831, 7751493599, ...}. Thus a(1) = 14 because for n<14 A117731(n) = A082687(n) but A117731(14) = 54260455193 differs from A082687(14) = 7751493599.
Links
- Eric Weisstein, The World of Mathematics: Hilbert Matrix.
- Eric Weisstein, The World of Mathematics: Harmonic Number
Crossrefs
Cf. A117731 = Numerator of n*Sum[ 1/(n+k), {k, 1, n} ]. Cf. A082687 = Numerator of Sum[ 1/(n+k), {k, 1, n} ]. Cf. A125741 = The ratio of A117731(n) and A082687(n) when they are different.
Cf. A082687(n) = numerator of the 2n-th alternating harmonic number H'(2n) = Sum ((-1)^(k+1)/k, k=1..2n). H'(2n) = H(2n) - H(n), where H(n) = Sum (1/k, k=1..n) is the n-th harmonic number. A117731(n) = numerator of the sum of all matrix elements of n X n Hilbert matrix M(i, j) = 1/(i+j-1), (i, j=1..n).
Programs
-
Mathematica
h=0; Do[ h=h+1/(n+1)/(2n+1); f=Numerator[n*h]; g=Numerator[h]; If[ !Equal[f,g], Print[n] ], {n,1,17381} ]
Comments