cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A125781 Rectangular table, read by antidiagonals, defined by the following rule: start with all 1's in row zero; from then on, row n+1 equals the partial sums of row n excluding terms in columns k = m*(m+1)/2 - 2 (m>=2).

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 4, 3, 1, 1, 9, 8, 4, 1, 1, 24, 23, 14, 5, 1, 1, 77, 76, 52, 21, 6, 1, 1, 295, 294, 217, 91, 29, 7, 1, 1, 1329, 1328, 1033, 433, 141, 39, 8, 1, 1, 6934, 6933, 5604, 2307, 739, 216, 50, 9, 1, 1, 41351, 41350, 34416, 13804, 4276, 1274, 306, 62, 10, 1, 1
Offset: 0

Views

Author

Paul D. Hanna, Dec 09 2006

Keywords

Comments

Generated by a method similar to Moessner's factorial triangle (A125714).

Examples

			Rows are partial sums excluding terms in columns k = {1,4,8,13,...}:
row 2 = partial sums of [1, 3,4, 6,7,8, 10,11,12,13, ...];
row 3 = partial sums of [1, 8,14, 29,39,50, 75,90,106,123, ...];
row 4 = partial sums of [1, 23,52, 141,216,306, 535,695,876,1079,...].
The terms that are excluded in the partial sums are shown enclosed in
parenthesis in the table below. Rows of this table begin:
1,(1), 1, 1,(1), 1, 1, 1,(1), 1, 1, 1, 1,(1), 1, 1, 1, ...;
1,(2), 3, 4,(5), 6, 7, 8,(9), 10, 11, 12, 13,(14), 15, 16, 17, ...;
1,(4), 8, 14,(21), 29, 39, 50,(62), 75, 90, 106, 123,(141), 160, 181,.;
1,(9), 23, 52,(91), 141, 216, 306,(412), 535, 695, 876, 1079,(1305),..;
1,(24), 76, 217,(433), 739, 1274, 1969,(2845), 3924, 5479, 7335,...;
1,(77), 294, 1033,(2307), 4276, 8200, 13679,(21014), 30534, 45528,...;
1,(295), 1328, 5604,(13804), 27483, 58017, 103545,(167868), 255305,...;
1,(1329), 6933, 34416,(92433), 195978, 451283, 855463,(1454823),...;
1,(6934), 41350, 237328,(688611), 1544074, 3847960, 7700971,...;
1,(41351), 278679, 1822753,(5670713), 13371684, 35818351, 75299744,...;
1,(278680), 2101433, 15473117,(51291468), 126591212, 362337006,...;
1,(2101434), 17574551, 144165763,(506502769), 1303252476,...;
1,(17574552), 161740315, 1464992791,(5430460072), 14517950305,...;
Column 1 of this table equals column 1 of triangle A091351;
triangle A091351 begins:
1;
1, 1;
1, 2, 1;
1, 4, 3, 1;
1, 9, 9, 4, 1;
1, 24, 30, 16, 5, 1;
1, 77, 115, 70, 25, 6, 1;
1, 295, 510, 344, 135, 36, 7, 1;
1, 1329, 2602, 1908, 805, 231, 49, 8, 1; ...
where column k of A091351 = row sums of matrix power A091351^k for k>=0.
		

Crossrefs

Cf. A091351, A091352; columns: A125782, A125783, A125784, A125785, A125786; diagonals: A125787, A125788; A125789 (antidiagonal sums), A125714.

Programs

  • PARI
    {T(n,k)=local(A=0,b=2,c=0,d=0);if(n==0,A=1, until(d>k,if(c==b*(b+1)/2-2,b+=1,A+=T(n-1,c);d+=1);c+=1));A}

Formula

Surprisingly, column 1 equals A091352 = column 1 of triangle A091351, in which column k equals row sums of the matrix power A091351^k. Column 3 of this table also equals column 1 of matrix power A091351^2.