cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A053416 Circle numbers (version 4): a(n)= number of points (i+j/2,j*sqrt(3)/2), i,j integers (triangular grid) contained in a circle of diameter n, centered at (0,0).

Original entry on oeis.org

1, 1, 7, 7, 19, 19, 37, 43, 61, 73, 91, 109, 127, 151, 187, 199, 241, 253, 301, 313, 367, 397, 439, 475, 517, 571, 613, 661, 721, 757, 823, 859, 931, 979, 1045, 1111, 1165, 1237, 1303, 1381, 1459, 1519, 1615, 1663, 1765, 1813, 1921, 1993, 2083, 2173, 2263
Offset: 0

Views

Author

Klaus Strassburger (strass(AT)ddfi.uni-duesseldorf.de), Jan 10 2000

Keywords

Comments

In other words, number of points in a hexagonal lattice covered by a circle of diameter n if the center of the circle is chosen at a grid point. - Hugo Pfoertner, Jan 07 2007
Same as above but "number of disks (r = 1)" instead of "number of points". See illustration in links. - Kival Ngaokrajang, Apr 06 2014

Crossrefs

Cf. A053411, A053414, A053415, A053417, A053458 (open disk), A308685 (bisection).

Programs

  • Maple
    A053416 := proc(d)
        local a,j,imin,imax ;
        a := 0 ;
        for j from -floor(d/sqrt(3)) do
            if j^2*3 > d^2 and j> 0 then
                break ;
            end if;
            imin := ceil((-j-sqrt(d^2-3*j^2))/2) ;
            imax := floor((-j+sqrt(d^2-3*j^2))/2) ;
            a := a+imax-imin+1 ;
        end do:
        a ;
    end proc:
    seq(A053416(d),d=0..30) ; # R. J. Mathar, Nov 22 2022
  • Mathematica
    a[n_] := Sum[Boole[4*(i^2 + i*j + j^2) <= n^2], {i, -n, n}, {j, -n, n}];
    Table[a[n], {n, 0, 100}] (* Jean-François Alcover, Jun 06 2013, updated Apr 08 2022 to correct a discrepancy wrt b-file noticed by Georg Fischer *)

Formula

a(n)/(n/2)^2->Pi*2/sqrt(3).
a(n) >= A053458(n). - R. J. Mathar, Nov 22 2022
a(2*n) = A308685(n). - R. J. Mathar, Nov 22 2022

Extensions

Edited by N. J. A. Sloane, Jul 03 2008 at the suggestion of R. J. Mathar
Showing 1-1 of 1 results.