A125866 Odd numbers k such that cos(2*Pi/k) is an algebraic number of a 3-smooth degree, but not 2-smooth.
7, 9, 13, 19, 21, 27, 35, 37, 39, 45, 57, 63, 65, 73, 81, 91, 95, 97, 105, 109, 111, 117, 119, 133, 135, 153, 163, 171, 185, 189, 193, 195, 219, 221, 243, 247, 259, 273, 285, 291, 315, 323, 327, 333, 351, 357, 365, 399, 405, 433, 455, 459, 481, 485, 487, 489
Offset: 1
Keywords
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Programs
-
Maple
filter:= proc(n) local r,a,b; r:= numtheory:-phi(n); a:= padic:-ordp(r,2); b:= padic:-ordp(r,3); if b = 0 then return false fi; r = 2^a*3^b; end proc: select(filter, [seq(i,i=3..1000,2)]); # Robert Israel, May 11 2020
-
Mathematica
Do[If[Take[FactorInteger[EulerPhi[2n+1]][[ -1]], 1]=={3},Print[2n+1]],{n,1,10000}]
Extensions
Edited by Don Reble, Apr 24 2007
Comments