cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A125961 Decimal expansion of e * sqrt(Pi) * erf(1).

Original entry on oeis.org

4, 0, 6, 0, 1, 5, 6, 9, 3, 8, 5, 5, 7, 4, 0, 9, 9, 5, 1, 0, 7, 8, 1, 7, 9, 8, 5, 1, 3, 3, 1, 9, 0, 0, 8, 9, 7, 8, 6, 5, 1, 2, 9, 1, 7, 8, 6, 3, 6, 9, 4, 5, 0, 4, 9, 4, 6, 0, 3, 9, 0, 6, 8, 4, 7, 7, 2, 6, 3, 5, 0, 7, 9, 7, 8, 7, 7, 8, 1, 3, 8, 5, 3, 8, 9, 7, 6, 8, 6, 6, 0, 1, 6, 7, 1, 5, 3, 9, 8, 5
Offset: 1

Views

Author

Fredrik Johansson, Feb 06 2007

Keywords

Examples

			c = 4.06015693855740995107817985133190089786512917863694504946039...
		

Programs

  • MATLAB
    exp(1)*sqrt(pi)*erf(1) % Altug Alkan, Nov 11 2015
    
  • Mathematica
    RealDigits[N[E Sqrt[Pi] Erf[1], 100]][[1]]
  • PARI
    exp(1)*sqrt(Pi)*(1-erfc(1)) \\ Michel Marcus, Nov 11 2015
    
  • PARI
    vector(100, n, if(n<1, 0, default(realprecision, n+2); floor((exp(1)*sqrt(Pi)*(1-erfc(1)))*10^(n-1))%10)) \\ Altug Alkan, Nov 11 2015

Formula

Equals Sum_{k >= 1} (2^k / (2k-1)!!).
Equals Integral_{x=0..1} e^x dx/sqrt(1-x). - Amiram Eldar, Jul 04 2020