A126062 Array read by antidiagonals: see A128195 for details.
1, 1, 1, 1, 4, 1, 1, 9, 15, 1, 1, 16, 65, 64, 1, 1, 25, 175, 511, 325, 1, 1, 36, 369, 2020, 4743, 1956, 1, 1, 49, 671, 5629, 27313, 52525, 13699, 1, 1, 64, 1105, 12736, 100045, 440896, 683657, 109600, 1, 1, 81, 1695, 25099, 280581, 2122449, 8390875, 10256775
Offset: 0
Examples
Array begins: [0] 1, 1, 1, 1, 1, 1, 1, 1, 1 [1] 1, 4, 15, 64, 325, 1956, 13699, 109600, 986409 [2] 1, 9, 65, 511, 4743, 52525, 683657, 10256775, 174369527 [3] 1, 16, 175, 2020, 27313, 440896, 8390875, 184647364, 4616348125 [4] 1, 25, 369, 5629, 100045, 2122449, 53163625, 1542220261, 50895431301 [5] 1, 36, 671, 12736, 280581, 7376356, 229151411, 8252263296, 338358810761
Links
- P. Luschny, Variants of Variations.
Crossrefs
Programs
-
Maple
A126062 := proc(k,n) if n = 0 then 1 ; else (n*k+1)*(A126062(k,n-1)+k^n) ; fi ; end: for diag from 0 to 10 do for k from diag to 0 by -1 do n := diag-k ; printf("%d, ",A126062(k,n)) ; od ; od ; # R. J. Mathar, May 18 2007
-
Mathematica
a[, 0] = 1; a[k, n_] := a[k, n] = (n*k+1)*(a[k, n-1]+k^n); Table[a[k-n, n], {k, 0, 10}, {n, 0, k}] // Flatten (* Jean-François Alcover, Jan 08 2014 *)
Formula
T(k, n) = (n*k+1)*(T(k, n-1) + k^n), T(k, 0) = 1. - Peter Luschny, Feb 26 2007
Extensions
More terms from R. J. Mathar, May 18 2007