cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A128195 a(n) = (2*n + 1)*(a(n - 1) + 2^n) for n >= 1, a(0) = 1.

Original entry on oeis.org

1, 9, 65, 511, 4743, 52525, 683657, 10256775, 174369527, 3313030741, 69573667065, 1600194389599, 40004859842375, 1080131215965309, 31323805263469097, 971037963168557815, 32044252784564570583, 1121548847459764557925, 41497307356011298342553, 1618394986884440655806799
Offset: 0

Views

Author

Peter Luschny, Feb 26 2007

Keywords

Crossrefs

Cf. A007526 (The number of variations), A128196 (A weighted sum of double factorials), A126062.

Programs

  • Maple
    a := n -> `if`(n=0,1,(2*n+1)*(a(n-1)+2^n));
  • Mathematica
    a[0] = 1; a[n_] := a[n] = (2*n+1)*(a[n-1] + 2^n); Table[a[n], {n, 0, 14}] (* Jean-François Alcover, Jul 29 2013 *)

Formula

a(n) = A126062(2, n), double variations.
a(n) = (2n+1)!/(n! 2^n) Sum(k=0..n, 4^k*k!/(2k)!) [Gottfried Helms]
a(n) = 2^n (2n+1) Sum(k=0..n, Gamma(n+1/2)/Gamma(k+1/2))
a(n) = 2^(n+1) Gamma(n+3/2) Sum(k=0..n, 1/Gamma(k+1/2))
a(n) = A128196(n)*A005408(n)
a(n) = A128196(n+1)-A000079(n+1)
Recursive form:
a(n) = 2^(n+1)*v(n+1/2) with v(x) = if x <= 1 then x else x(v(x-1)+1).
a(n) = (2n+1)*(a(n-1)+2^n), a(0) = 1 [Wolfgang Thumser]
Note: The following constants will be used in the next formulas.
K = (1-exp(1)*Gamma(1/2,1))/Gamma(1/2)
M = sqrt(2)(1+exp(1)(Gamma(1/2)-Gamma(1/2,1)))
Generalized form: For x>0
a(x) = 2^(x+1)(x+1/2)(exp(1) Gamma(x+1/2,1) + K Gamma(x+1/2))
Asymptotic formula:
a(n) ~ 2^(n+5/2)*Gamma(n+3/2)
a(n) ~ (exp(1)+K)*2^(n+1)*(n+1/2)!
a(n) ~ M(2n+1)(2exp(-1)(n-1/(24*n+19/10*1/n)))^n

A128198 Array read by antidiagonals. A scheme of arrangements: ArrScheme(k,n) = VarScheme(k,n-1) + k^n; ArrScheme(k,0) = 1. VarScheme(k,n) = (n*k+1)*(VarScheme(k,n-1) + k^n); VarScheme(k,0) = 1.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 3, 5, 1, 1, 4, 13, 16, 1, 1, 5, 25, 73, 65, 1, 1, 6, 41, 202, 527, 326, 1, 1, 7, 61, 433, 2101, 4775, 1957, 1
Offset: 0

Views

Author

Peter Luschny, Mar 02 2007

Keywords

Comments

The second row (k=1) is sequence A000522 counting the arrangements of a set with n elements and the third row (k=2) is the sequence A128196. Cf. the scheme of variations A128195.

Examples

			Array begins:
[k=0] 1, 1, 1, 1, 1, 1, 1, 1
[k=1] 1, 2, 5, 16, 65, 326, 1957, 13700
[k=2] 1, 3, 13, 73, 527, 4775, 52589, 683785
[k=3] 1, 4, 25, 202, 2101, 27556, 441625, 8393062
[k=4] 1, 5, 41, 433, 5885, 101069, 2126545, 53180009
[k=5] 1, 6, 61, 796, 13361, 283706, 7391981, 229229536
[k=6] 1, 7, 85, 1321, 26395, 667651, 20743837, 767801905
[k=7] 1, 8, 113, 2038, 47237, 1386680, 50038129, 2152463090
		

Crossrefs

Programs

  • Maple
    VarScheme := (k,n) -> `if`(n=0,1,(n*k+1)*(VarScheme(k,n-1)+k^n)); ArrScheme := (k,n) -> `if`(n=0,1, VarScheme(k,n-1)+k^n);
Showing 1-2 of 2 results.