A126062
Array read by antidiagonals: see A128195 for details.
Original entry on oeis.org
1, 1, 1, 1, 4, 1, 1, 9, 15, 1, 1, 16, 65, 64, 1, 1, 25, 175, 511, 325, 1, 1, 36, 369, 2020, 4743, 1956, 1, 1, 49, 671, 5629, 27313, 52525, 13699, 1, 1, 64, 1105, 12736, 100045, 440896, 683657, 109600, 1, 1, 81, 1695, 25099, 280581, 2122449, 8390875, 10256775
Offset: 0
Array begins:
[0] 1, 1, 1, 1, 1, 1, 1, 1, 1
[1] 1, 4, 15, 64, 325, 1956, 13699, 109600, 986409
[2] 1, 9, 65, 511, 4743, 52525, 683657, 10256775, 174369527
[3] 1, 16, 175, 2020, 27313, 440896, 8390875, 184647364, 4616348125
[4] 1, 25, 369, 5629, 100045, 2122449, 53163625, 1542220261, 50895431301
[5] 1, 36, 671, 12736, 280581, 7376356, 229151411, 8252263296, 338358810761
The second row counts the variations of n distinct objects
A007526.
The second column is sequence
A000290. The third column is sequence
A005917.
-
A126062 := proc(k,n) if n = 0 then 1 ; else (n*k+1)*(A126062(k,n-1)+k^n) ; fi ; end: for diag from 0 to 10 do for k from diag to 0 by -1 do n := diag-k ; printf("%d, ",A126062(k,n)) ; od ; od ; # R. J. Mathar, May 18 2007
-
a[, 0] = 1; a[k, n_] := a[k, n] = (n*k+1)*(a[k, n-1]+k^n); Table[a[k-n, n], {k, 0, 10}, {n, 0, k}] // Flatten (* Jean-François Alcover, Jan 08 2014 *)
A005917
Rhombic dodecahedral numbers: a(n) = n^4 - (n - 1)^4.
Original entry on oeis.org
1, 15, 65, 175, 369, 671, 1105, 1695, 2465, 3439, 4641, 6095, 7825, 9855, 12209, 14911, 17985, 21455, 25345, 29679, 34481, 39775, 45585, 51935, 58849, 66351, 74465, 83215, 92625, 102719, 113521, 125055, 137345, 150415, 164289, 178991
Offset: 1
- J. H. Conway and R. K. Guy, The Book of Numbers, p. 53.
- E. Deza and M. M. Deza, Figurate Numbers, World Scientific Publishing, 2012, pp. 123-124.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Vincenzo Librandi, Table of n, a(n) for n = 1..10000
- Mario Defranco and Paul E. Gunnells, Hypergraph matrix models and generating functions, arXiv:2204.11361 [math.CO], 2022.
- Milan Janjic, Two Enumerative Functions
- T. P. Martin, Shells of atoms, Phys. Rep., 273 (1996), 199-241, eq. (9).
- Andy Nicol, Illustration of Rhombic Dodecahedral Numbers
- C. J. Pita Ruiz V., Some Number Arrays Related to Pascal and Lucas Triangles, J. Int. Seq. 16 (2013) #13.5.7
- Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
- Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992
- B. K. Teo and N. J. A. Sloane, Magic numbers in polygonal and polyhedral clusters, Inorgan. Chem. 24 (1985), 4545-4558.
- Eric Weisstein's World of Mathematics, Rhombic Dodecahedral Number.
- Eric Weisstein's World of Mathematics, Nexus Number.
- D. Zeitlin, A family of Galileo sequences, Amer. Math. Monthly 82 (1975), 819-822.
- Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1).
(1/12)*t*(2*n^3 - 3*n^2 + n) + 2*n - 1 for t = 2, 4, 6, ... gives
A049480,
A005894,
A063488,
A001845,
A063489,
A005898,
A063490,
A057813,
A063491,
A005902,
A063492,
A063493,
A063494,
A063495,
A063496.
-
a005917 n = a005917_list !! (n-1)
a005917_list = map sum $ f 1 [1, 3 ..] where
f x ws = us : f (x + 2) vs where (us, vs) = splitAt x ws
-- Reinhard Zumkeller, Nov 13 2014
-
[n^4 - (n-1)^4: n in [1..50]]; // Vincenzo Librandi, Aug 01 2011
-
Table[n^4-(n-1)^4,{n,40}] (* Harvey P. Dale, Apr 01 2011 *)
#[[2]]-#[[1]]&/@Partition[Range[0,40]^4,2,1] (* More efficient than the above Mathematica program because it only has to calculate each 4th power once *) (* Harvey P. Dale, Feb 07 2015 *)
Differences[Range[0,40]^4] (* Harvey P. Dale, Aug 11 2023 *)
-
a(n)=n^4-(n-1)^4 \\ Charles R Greathouse IV, Jul 31 2011
-
A005917_list, m = [], [24, -12, 2, 1]
for _ in range(10**2):
A005917_list.append(m[-1])
for i in range(3):
m[i+1] += m[i] # Chai Wah Wu, Dec 15 2015
A007526
a(n) = n*(a(n-1) + 1), a(0) = 0.
Original entry on oeis.org
0, 1, 4, 15, 64, 325, 1956, 13699, 109600, 986409, 9864100, 108505111, 1302061344, 16926797485, 236975164804, 3554627472075, 56874039553216, 966858672404689, 17403456103284420, 330665665962403999, 6613313319248080000, 138879579704209680021, 3055350753492612960484
Offset: 0
G.f. = x + 4*x^2 + 15*x^3 + 64*x^4 + 325*x^5 + 1956*x^6 + 13699*x^7 + ...
Consider the nonempty subsets of the set {1,2,3,...,n} formed by the first n integers. E.g., for n = 3 we have {1}, {2}, {3}, {1,2}, {1,3}, {2,3}, {1,2,3}. For each subset S we determine its number of parts, that is nprts(S). The sum over all subsets is written as sum_{S=subsets}. Then we have A007526 = Sum_{S=subsets} nprts(S)!. E.g., for n = 3 we have 1!+1!+1!+2!+2!+2!+3! = 15. - _Thomas Wieder_, Jun 17 2006
a(3)=15: Let the objects be a, b, and c. The fifteen nonempty ordered subsets are {a}, {b}, {c}, {ab}, {ba}, {ac}, {ca}, {bc}, {cb}, {abc}, {acb}, {bac}, {bca}, {cab} and {cba}.
- Jacob Bernoulli, Ars Conjectandi (1713), page 127.
- Johannes Caramuel de Lobkowitz, Mathesis Biceps Vetus et Nova (Campania: 1670), volume 2, 942-943.
- J. K. Horn, personal communication to Robert G. Wilson v.
- Sebastian Izquierdo, Pharus Scientiarum (Lyon: 1659), 327-328.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Alois P. Heinz, Table of n, a(n) for n = 0..450 (first 101 terms from T. D. Noe)
- J. L. Adams, Conceptual Blockbusting: A Guide to Better Ideas, Freeman, San Francisco, 1974. [Annotated scans of pages 69 and 70 only]
- J. Bernoulli, Wahrscheinlichkeitsrechnung (Ars conjectandi) von Jakob Bernoulli (1713) Uebers. und hrsg. von R. Haussner, Leipzig, W. Engelmann, (1899), [124] Kapitel VII. Variationen ohne Wiederholung. (Page 121).
- Oscar Cabrera, Introducing loop compression for encoding de Bruijn sequences, engrXiv (2025) Art. No. 4431. See p. 16.
- Peter J. Freyd, Core algebra revisited, Theoretical Computer Science, 375 (2007), Issues 1-3, 193-200.
- Z. Kasa and Z. Katai, Scattered subwords and composition of natural numbers, Acta Univ. Sapientiae, Informatica, 4, 2 (2012) 225-236. - From _N. J. A. Sloane_, Feb 21 2013
- Jean Prestet, Elemens des Mathematiques, (1675), page 341.
- Joe Sawada and A. Williams, Successor rules for flipping pancakes and burnt pancakes, Preprint 2015.
- Elmar Teufl and Stephan Wagner, Enumeration problems for classes of self-similar graphs, Journal of Combinatorial Theory, Series A, Volume 114, Issue 7, October 2007, Pages 1254-1277.
-
a:=[0];; for n in [2..25] do a[n]:=(n-1)*(a[n-1]+1); od; a; # Muniru A Asiru, Aug 07 2018
-
a007526 n = a007526_list !! n
a007526_list = 0 : zipWith (*) [1..] (map (+ 1) a007526_list)
-- Reinhard Zumkeller, Aug 27 2013
-
A007526 := n -> add(n!/k!,k=0..n) - 1;
a := n -> n*hypergeom([1,1-n],[],-1):
seq(simplify(a(n)), n=0..22); # Peter Luschny, May 09 2017
# third Maple program:
a:= proc(n) option remember;
`if`(n<0, 0, n*(1+a(n-1)))
end:
seq(a(n), n=0..23); # Alois P. Heinz, Jan 06 2020
-
Table[ Sum[n!/(n - r)!, {r, 1, n}], {n, 0, 20}] (* or *) Table[n!*Sum[1/k!, {k, 0, n - 1}], {n, 0, 20}]
a=1;Table[a=(a-1)*(n-1);Abs[a],{n,0,40}] (* Vladimir Joseph Stephan Orlovsky, Nov 20 2009 *)
FoldList[#1*#2 + #2 &, 0, Range[19]] (* Robert G. Wilson v, Jul 07 2012 *)
f[n_] := Floor[E*n! - 1]; f[0] = 0; Array[f, 20, 0] (* Robert G. Wilson v, Feb 06 2015 *)
a[n_] := n (a[n - 1] +1); a[0] = 0; Array[a, 20, 0] (* Robert G. Wilson v, Feb 06 2015 *)
Round@Table[E n Gamma[n, 1], {n, 0, 20}] (* Round is equivalent to FullSimplify here, but is much faster - Vladimir Reshetnikov, Oct 07 2016 *)
-
{a(n) = if( n<1, 0, n * (a(n-1) + 1))}; /* Michael Somos, Apr 06 2003 */
-
{a(n) = if( n<0, 0, n! * polcoeff(x * exp(x + x * O(x^n)) / (1 - x), n))}; /* Michael Somos, Mar 04 2004 */
-
a(n)= sum(k=1,n, prod(j=0,k-1,n-j))
A128196
a(n) = (2*n - 1)*a(n - 1) + 2^n for n >= 1, a(0) = 1.
Original entry on oeis.org
1, 3, 13, 73, 527, 4775, 52589, 683785, 10257031, 174370039, 3313031765, 69573669113, 1600194393695, 40004859850567, 1080131215981693, 31323805263501865, 971037963168623351, 32044252784564701655, 1121548847459764820069, 41497307356011298866841, 1618394986884440656855375
Offset: 0
-
a := n -> `if`(n=0,1,(2*n-1)*a(n-1)+2^n);
-
a[n_] := Sum[2^k*((2*n-1)!!/(2*k-1)!!), {k, 0, n}]; Table[a[n], {n, 0, 14}] (* Jean-François Alcover, Jun 28 2013 *)
A128198
Array read by antidiagonals. A scheme of arrangements: ArrScheme(k,n) = VarScheme(k,n-1) + k^n; ArrScheme(k,0) = 1. VarScheme(k,n) = (n*k+1)*(VarScheme(k,n-1) + k^n); VarScheme(k,0) = 1.
Original entry on oeis.org
1, 1, 1, 1, 2, 1, 1, 3, 5, 1, 1, 4, 13, 16, 1, 1, 5, 25, 73, 65, 1, 1, 6, 41, 202, 527, 326, 1, 1, 7, 61, 433, 2101, 4775, 1957, 1
Offset: 0
Array begins:
[k=0] 1, 1, 1, 1, 1, 1, 1, 1
[k=1] 1, 2, 5, 16, 65, 326, 1957, 13700
[k=2] 1, 3, 13, 73, 527, 4775, 52589, 683785
[k=3] 1, 4, 25, 202, 2101, 27556, 441625, 8393062
[k=4] 1, 5, 41, 433, 5885, 101069, 2126545, 53180009
[k=5] 1, 6, 61, 796, 13361, 283706, 7391981, 229229536
[k=6] 1, 7, 85, 1321, 26395, 667651, 20743837, 767801905
[k=7] 1, 8, 113, 2038, 47237, 1386680, 50038129, 2152463090
-
VarScheme := (k,n) -> `if`(n=0,1,(n*k+1)*(VarScheme(k,n-1)+k^n)); ArrScheme := (k,n) -> `if`(n=0,1, VarScheme(k,n-1)+k^n);
Showing 1-5 of 5 results.
Comments