A126063
Triangle read by rows: see A128196 for definition.
Original entry on oeis.org
1, 1, 2, 3, 6, 4, 15, 30, 20, 8, 105, 210, 140, 56, 16, 945, 1890, 1260, 504, 144, 32, 10395, 20790, 13860, 5544, 1584, 352, 64, 135135, 270270, 180180, 72072, 20592, 4576, 832, 128, 2027025, 4054050, 2702700, 1081080, 308880, 68640, 12480, 1920, 256
Offset: 0
Triangle begins:
1
1, 2
3, 6, 4
15, 30, 20, 8
105, 210, 140, 56, 16
945, 1890, 1260, 504, 144, 32
10395, 20790, 13860, 5544, 1584, 352, 64
135135, 270270, 180180, 72072, 20592, 4576, 832, 128
-
A126063 := (n,k) -> 2^k*doublefactorial(2*n-1)/ doublefactorial(2*k-1); seq(print(seq(A126063(n,k),k=0..n)),n=0..7); # Peter Luschny, Dec 20 2012
-
Flatten[Table[2^k (2n - 1)!!/(2k - 1)!!, {n, 0, 8}, {k, 0, n}]] (* Ivan Neretin, May 11 2015 *)
A014480
Expansion of g.f. (1+2*x)/(1-2*x)^2.
Original entry on oeis.org
1, 6, 20, 56, 144, 352, 832, 1920, 4352, 9728, 21504, 47104, 102400, 221184, 475136, 1015808, 2162688, 4587520, 9699328, 20447232, 42991616, 90177536, 188743680, 394264576, 822083584, 1711276032, 3556769792, 7381975040, 15300820992, 31675383808, 65498251264
Offset: 0
(1 + 2*x)/(1-2*x)^2 = 1 + 6*x + 20*x^2 + 56*x^3 + 144*x^4 + 352*x^5 + 832*x^6 + ...
- Reinhard Zumkeller, Table of n, a(n) for n = 0..1000
- David Bailey, Peter Borwein, and Simon Plouffe, On the rapid computation of various polylogarithmic constants, in: L. Berggren, J. Borwein, and P. Borwein (eds.), Pi: A Source Book, Springer, New York, NY, 2000.
- Index entries for linear recurrences with constant coefficients, signature (4,-4).
Leftmost column of
A167580 (shifted).
-
a014480 n = a014480_list !! n
a014480_list = 1 : 6 : map (* 4)
(zipWith (-) (tail a014480_list) a014480_list)
-- Reinhard Zumkeller, Jan 22 2012
-
[2^n*(2*n + 1): n in [0..35]]; // Vincenzo Librandi, Oct 20 2014
-
a:=n-> sum(2^n*n^binomial(j,n)/2,j=1..n): seq(a(n),n=1..29); # Zerinvary Lajos, Apr 18 2009
-
CoefficientList[ Series[(1 + 2*x)/(1 - 2*x)^2, {x, 0, 28}], x]
LinearRecurrence[{4, -4}, {1, 6}, 29] (* Robert G. Wilson v, Dec 26 2012 *)
Table[2^n (2*n + 1), {n, 0, 28}] (* Fred Daniel Kline, Oct 20 2014 *)
-
Vec((1+2*x)/(1-2*x)^2+O(x^99)) \\ Charles R Greathouse IV, Sep 23 2012
A128195
a(n) = (2*n + 1)*(a(n - 1) + 2^n) for n >= 1, a(0) = 1.
Original entry on oeis.org
1, 9, 65, 511, 4743, 52525, 683657, 10256775, 174369527, 3313030741, 69573667065, 1600194389599, 40004859842375, 1080131215965309, 31323805263469097, 971037963168557815, 32044252784564570583, 1121548847459764557925, 41497307356011298342553, 1618394986884440655806799
Offset: 0
-
a := n -> `if`(n=0,1,(2*n+1)*(a(n-1)+2^n));
-
a[0] = 1; a[n_] := a[n] = (2*n+1)*(a[n-1] + 2^n); Table[a[n], {n, 0, 14}] (* Jean-François Alcover, Jul 29 2013 *)
A128198
Array read by antidiagonals. A scheme of arrangements: ArrScheme(k,n) = VarScheme(k,n-1) + k^n; ArrScheme(k,0) = 1. VarScheme(k,n) = (n*k+1)*(VarScheme(k,n-1) + k^n); VarScheme(k,0) = 1.
Original entry on oeis.org
1, 1, 1, 1, 2, 1, 1, 3, 5, 1, 1, 4, 13, 16, 1, 1, 5, 25, 73, 65, 1, 1, 6, 41, 202, 527, 326, 1, 1, 7, 61, 433, 2101, 4775, 1957, 1
Offset: 0
Array begins:
[k=0] 1, 1, 1, 1, 1, 1, 1, 1
[k=1] 1, 2, 5, 16, 65, 326, 1957, 13700
[k=2] 1, 3, 13, 73, 527, 4775, 52589, 683785
[k=3] 1, 4, 25, 202, 2101, 27556, 441625, 8393062
[k=4] 1, 5, 41, 433, 5885, 101069, 2126545, 53180009
[k=5] 1, 6, 61, 796, 13361, 283706, 7391981, 229229536
[k=6] 1, 7, 85, 1321, 26395, 667651, 20743837, 767801905
[k=7] 1, 8, 113, 2038, 47237, 1386680, 50038129, 2152463090
-
VarScheme := (k,n) -> `if`(n=0,1,(n*k+1)*(VarScheme(k,n-1)+k^n)); ArrScheme := (k,n) -> `if`(n=0,1, VarScheme(k,n-1)+k^n);
Showing 1-4 of 4 results.
Comments