cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A126063 Triangle read by rows: see A128196 for definition.

Original entry on oeis.org

1, 1, 2, 3, 6, 4, 15, 30, 20, 8, 105, 210, 140, 56, 16, 945, 1890, 1260, 504, 144, 32, 10395, 20790, 13860, 5544, 1584, 352, 64, 135135, 270270, 180180, 72072, 20592, 4576, 832, 128, 2027025, 4054050, 2702700, 1081080, 308880, 68640, 12480, 1920, 256
Offset: 0

Views

Author

N. J. A. Sloane, Feb 28 2007

Keywords

Examples

			Triangle begins:
       1
       1,       2
       3,       6,       4
      15,      30,      20,       8
     105,     210,     140,      56,     16
     945,    1890,    1260,     504,    144,    32
   10395,   20790,   13860,    5544,   1584,   352,    64
  135135,  270270,  180180,   72072,  20592,  4576,   832,  128
		

Crossrefs

First column is A001147, second column is A097801.
The diagonal is A000079, the subdiagonal is A014480.

Programs

  • Maple
    A126063 := (n,k) -> 2^k*doublefactorial(2*n-1)/ doublefactorial(2*k-1); seq(print(seq(A126063(n,k),k=0..n)),n=0..7); # Peter Luschny, Dec 20 2012
  • Mathematica
    Flatten[Table[2^k (2n - 1)!!/(2k - 1)!!, {n, 0, 8}, {k, 0, n}]] (* Ivan Neretin, May 11 2015 *)

Formula

Let H be the diagonal matrix diag(1,2,4,8,...) and
let G be the matrix (n!! defined as A001147(n), -1!! = 1):
(-1)!!/(-1)!!
1!!/(-1)!! 1!!/1!!
3!!/(-1)!! 3!!/1!! 3!!/3!!
5!!/(-1)!! 5!!/1!! 5!!/3!! 5!!/5!!
...
Then T = G*H. [Gottfried Helms]
T(n,k) = 2^k*(2n - 1)!!/(2k - 1)!!. - Ivan Neretin, May 13 2015

A014480 Expansion of g.f. (1+2*x)/(1-2*x)^2.

Original entry on oeis.org

1, 6, 20, 56, 144, 352, 832, 1920, 4352, 9728, 21504, 47104, 102400, 221184, 475136, 1015808, 2162688, 4587520, 9699328, 20447232, 42991616, 90177536, 188743680, 394264576, 822083584, 1711276032, 3556769792, 7381975040, 15300820992, 31675383808, 65498251264
Offset: 0

Views

Author

Keywords

Comments

Number of binary trees of size n and height n-1, computed from size n=3 onward; i.e. A014480(n) = A073345(n+3,n+2). (For sizes n=0 through 2 there are no such trees.)
Also determinant of the n X n matrix M(i,j)=binomial(2i+2j,i+j). - Benoit Cloitre, Mar 27 2004
Subdiagonal in triangle displayed in A128196. - Peter Luschny, Feb 26 2007
From Jaume Oliver Lafont, Nov 08 2009: (Start)
From two BBP-type formulas by Knuth, (page 6 of the reference)
Sum_{n>=0} 1/a(n) = 2^(1/2)*log(1+2^(1/2))
Sum_{n>=0} (-1)^n/a(n) = 2^(1/2)*atan(1/2^(1/2))
(End)
Create a triangle with first column T(n,1)=1+4*n for n=0 1 2... The remaining terms T(r,c)=T(r,c-1)+T(r-1,c-1). T(n,n+1)=a(n). - J. M. Bergot, Dec 18 2012

Examples

			(1 + 2*x)/(1-2*x)^2 = 1 + 6*x + 20*x^2 + 56*x^3 + 144*x^4 + 352*x^5 + 832*x^6 + ...
		

Crossrefs

Leftmost column of A167580 (shifted).

Programs

  • Haskell
    a014480 n = a014480_list !! n
    a014480_list = 1 : 6 : map (* 4)
       (zipWith (-) (tail a014480_list) a014480_list)
    -- Reinhard Zumkeller, Jan 22 2012
    
  • Magma
    [2^n*(2*n + 1): n in [0..35]]; // Vincenzo Librandi, Oct 20 2014
  • Maple
    a:=n-> sum(2^n*n^binomial(j,n)/2,j=1..n): seq(a(n),n=1..29); # Zerinvary Lajos, Apr 18 2009
  • Mathematica
    CoefficientList[ Series[(1 + 2*x)/(1 - 2*x)^2, {x, 0, 28}], x]
    LinearRecurrence[{4, -4}, {1, 6}, 29] (* Robert G. Wilson v, Dec 26 2012 *)
    Table[2^n (2*n + 1), {n, 0, 28}] (* Fred Daniel Kline, Oct 20 2014 *)
  • PARI
    Vec((1+2*x)/(1-2*x)^2+O(x^99)) \\ Charles R Greathouse IV, Sep 23 2012
    

Formula

a(n) = (2n+1)*2^n = 4a(n-1)-4a(n-2) = 4*A052951(n-1) = a(n-1)+A052951(n) = a(n-1)*(2+4/(2n-1)) = A054582(n, n). - Henry Bottomley, May 16 2001
E.g.f.: x*cosh(sqrt(2)*x) = x + 6x^3/3! + 20x^5/5! + 56x^7/7! +... - Ralf Stephan, Mar 03 2005
From Reinhard Zumkeller, Apr 27 2006: (Start)
a(n) = A118416(n+1,n+1) = A118413(n+1,n+1);
A001511(a(n)) = A003602(a(n));
A117303(a(n)) = a(n). (End)
Row sums of triangle A132775 - Gary W. Adamson, Aug 29 2007
Row sums of triangle A134233 - Gary W. Adamson, Oct 14 2007
From Johannes W. Meijer, Nov 23 2009: (Start)
a(n) = 3*a(n-1) - 2^(n-1)*(2*n-5) with a(0) = 1.
a(n) = 3*a(n-1) - 2*a(n-2) + 2^n with a(0) = 1 and a(1) = 6.
(End)
G.f.: -G(0) where G(k) = 1 - (2*k+2)/(1 - x/(x - (k+1)/G(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Dec 06 2012
E.g.f.: Q(0), where Q(k)= 1 + 4*x/( 1 - 1/(1 + 2*(k+1)/Q(k+1))); (continued fraction). - Sergei N. Gladkovskii, May 11 2013

A128195 a(n) = (2*n + 1)*(a(n - 1) + 2^n) for n >= 1, a(0) = 1.

Original entry on oeis.org

1, 9, 65, 511, 4743, 52525, 683657, 10256775, 174369527, 3313030741, 69573667065, 1600194389599, 40004859842375, 1080131215965309, 31323805263469097, 971037963168557815, 32044252784564570583, 1121548847459764557925, 41497307356011298342553, 1618394986884440655806799
Offset: 0

Views

Author

Peter Luschny, Feb 26 2007

Keywords

Crossrefs

Cf. A007526 (The number of variations), A128196 (A weighted sum of double factorials), A126062.

Programs

  • Maple
    a := n -> `if`(n=0,1,(2*n+1)*(a(n-1)+2^n));
  • Mathematica
    a[0] = 1; a[n_] := a[n] = (2*n+1)*(a[n-1] + 2^n); Table[a[n], {n, 0, 14}] (* Jean-François Alcover, Jul 29 2013 *)

Formula

a(n) = A126062(2, n), double variations.
a(n) = (2n+1)!/(n! 2^n) Sum(k=0..n, 4^k*k!/(2k)!) [Gottfried Helms]
a(n) = 2^n (2n+1) Sum(k=0..n, Gamma(n+1/2)/Gamma(k+1/2))
a(n) = 2^(n+1) Gamma(n+3/2) Sum(k=0..n, 1/Gamma(k+1/2))
a(n) = A128196(n)*A005408(n)
a(n) = A128196(n+1)-A000079(n+1)
Recursive form:
a(n) = 2^(n+1)*v(n+1/2) with v(x) = if x <= 1 then x else x(v(x-1)+1).
a(n) = (2n+1)*(a(n-1)+2^n), a(0) = 1 [Wolfgang Thumser]
Note: The following constants will be used in the next formulas.
K = (1-exp(1)*Gamma(1/2,1))/Gamma(1/2)
M = sqrt(2)(1+exp(1)(Gamma(1/2)-Gamma(1/2,1)))
Generalized form: For x>0
a(x) = 2^(x+1)(x+1/2)(exp(1) Gamma(x+1/2,1) + K Gamma(x+1/2))
Asymptotic formula:
a(n) ~ 2^(n+5/2)*Gamma(n+3/2)
a(n) ~ (exp(1)+K)*2^(n+1)*(n+1/2)!
a(n) ~ M(2n+1)(2exp(-1)(n-1/(24*n+19/10*1/n)))^n

A128198 Array read by antidiagonals. A scheme of arrangements: ArrScheme(k,n) = VarScheme(k,n-1) + k^n; ArrScheme(k,0) = 1. VarScheme(k,n) = (n*k+1)*(VarScheme(k,n-1) + k^n); VarScheme(k,0) = 1.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 3, 5, 1, 1, 4, 13, 16, 1, 1, 5, 25, 73, 65, 1, 1, 6, 41, 202, 527, 326, 1, 1, 7, 61, 433, 2101, 4775, 1957, 1
Offset: 0

Views

Author

Peter Luschny, Mar 02 2007

Keywords

Comments

The second row (k=1) is sequence A000522 counting the arrangements of a set with n elements and the third row (k=2) is the sequence A128196. Cf. the scheme of variations A128195.

Examples

			Array begins:
[k=0] 1, 1, 1, 1, 1, 1, 1, 1
[k=1] 1, 2, 5, 16, 65, 326, 1957, 13700
[k=2] 1, 3, 13, 73, 527, 4775, 52589, 683785
[k=3] 1, 4, 25, 202, 2101, 27556, 441625, 8393062
[k=4] 1, 5, 41, 433, 5885, 101069, 2126545, 53180009
[k=5] 1, 6, 61, 796, 13361, 283706, 7391981, 229229536
[k=6] 1, 7, 85, 1321, 26395, 667651, 20743837, 767801905
[k=7] 1, 8, 113, 2038, 47237, 1386680, 50038129, 2152463090
		

Crossrefs

Programs

  • Maple
    VarScheme := (k,n) -> `if`(n=0,1,(n*k+1)*(VarScheme(k,n-1)+k^n)); ArrScheme := (k,n) -> `if`(n=0,1, VarScheme(k,n-1)+k^n);
Showing 1-4 of 4 results.