A001511 The ruler function: exponent of the highest power of 2 dividing 2n. Equivalently, the 2-adic valuation of 2n.
1, 2, 1, 3, 1, 2, 1, 4, 1, 2, 1, 3, 1, 2, 1, 5, 1, 2, 1, 3, 1, 2, 1, 4, 1, 2, 1, 3, 1, 2, 1, 6, 1, 2, 1, 3, 1, 2, 1, 4, 1, 2, 1, 3, 1, 2, 1, 5, 1, 2, 1, 3, 1, 2, 1, 4, 1, 2, 1, 3, 1, 2, 1, 7, 1, 2, 1, 3, 1, 2, 1, 4, 1, 2, 1, 3, 1, 2, 1, 5, 1, 2, 1, 3, 1, 2, 1, 4, 1, 2, 1, 3, 1, 2, 1, 6, 1, 2, 1, 3, 1, 2, 1, 4, 1
Offset: 1
A016813 a(n) = 4*n + 1.
1, 5, 9, 13, 17, 21, 25, 29, 33, 37, 41, 45, 49, 53, 57, 61, 65, 69, 73, 77, 81, 85, 89, 93, 97, 101, 105, 109, 113, 117, 121, 125, 129, 133, 137, 141, 145, 149, 153, 157, 161, 165, 169, 173, 177, 181, 185, 189, 193, 197, 201, 205, 209, 213, 217, 221, 225, 229, 233, 237
Offset: 0
Comments
Apart from initial term(s), dimension of the space of weight 2n cusp forms for Gamma_0( 23 ).
Apart from initial term(s), dimension of the space of weight 2n cuspidal newforms for Gamma_0( 64 ).
Numbers k such that k and (k+1) have the same binary digital sum. - Benoit Cloitre, Jun 05 2002
Numbers k such that (1 + sqrt(k))/2 is an algebraic integer. - Alonso del Arte, Jun 04 2012
Numbers k such that 2 is the only prime p that satisfies the relationship p XOR k = p + k. - Brad Clardy, Jul 22 2012
1, 9, 21, 37, 57, 81, ...
5, 17, 33, 53, 77, 105, ...
13, 29, 49, 73, 101, 133, ...
25, 45, 69, 97, 129, 165, ...
41, 65, 93, 125, 161, 201, ...
61, 89, 121, 157, 197, 241, ...
...
- R. J. Mathar, Jul 10 2013
With leading term 2 instead of 1, 1/a(n) is the largest tolerance of form 1/k, where k is a positive integer, so that the nearest integer to (n - 1/k)^2 and to (n + 1/k)^2 is n^2. In other words, if interval arithmetic is used to square [n - 1/k, n + 1/k], every value in the resulting interval of length 4n/k rounds to n^2 if and only if k >= a(n). - Rick L. Shepherd, Jan 20 2014
Odd numbers for which the number of prime factors congruent to 3 (mod 4) is even. - Daniel Forgues, Sep 20 2014
For the Collatz conjecture, we identify two types of odd numbers. This sequence contains all the descenders: where (3*a(n) + 1) / 2 is even and requires additional divisions by 2. See A004767 for the ascenders. - Fred Daniel Kline, Nov 29 2014 [corrected by Jaroslav Krizek, Jul 29 2016]
a(n-1), n >= 1, is also the complex dimension of the manifold M(S), the set of all conjugacy classes of irreducible representations of the fundamental group pi_1(X,x_0) of rank 2, where S = {a_1, ..., a_{n}, a_{n+1} = oo}, a subset of P^1 = C U {oo}, X = X(S) = P^1 \ S, and x_0 a base point in X. See the Iwasaki et al. reference, Proposition 2.1.4. p. 150. - Wolfdieter Lang, Apr 22 2016
For n > 3, also the number of (not necessarily maximal) cliques in the n-sunlet graph. - Eric W. Weisstein, Nov 29 2017
For integers k with absolute value in A047202, also exponents of the powers of k having the same unit digit of k in base 10. - Stefano Spezia, Feb 23 2021
Starting with a(1) = 5, numbers ending with 01 in base 2. - John Keith, May 09 2022
Examples
From _Leo Tavares_, Jul 02 2021: (Start) Illustration of initial terms: o o o o o o o o o o o o o o o o o o o o o o o o o o o o (End)
References
- K. Iwasaki, H. Kimura, S. Shimomura and M. Yoshida, From Gauss to Painlevé, Vieweg, 1991. p. 150.
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Colin Defant and Noah Kravitz, Loops and Regions in Hitomezashi Patterns, arXiv:2201.03461 [math.CO], 2022. Theorem 1.3.
- Gennady Eremin, Partitioning the set of natural numbers into Mersenne trees and into arithmetic progressions; Natural Matrix and Linnik's constant, arXiv:2405.16143 [math.CO], 2024. See pp. 5, 8, 14.
- Gennady Eremin, Infinite matrix of odd natural numbers. A bit about Sophie Germain prime numbers, arXiv:2501.17090 [math.GM], 2025. See pp. 3, 11.
- L. B. W. Jolley, Summation of Series, Dover Publications, 1961, p. 16.
- Tanya Khovanova, Recursive Sequences
- Konrad Knopp, Theorie und Anwendung der unendlichen Reihen, Berlin, J. Springer, 1922. (Original German edition of "Theory and Application of Infinite Series")
- Konrad Knopp, Theory and Application of Infinite Series, Dover, p. 269.
- Luis Manuel Rivera, Integer sequences and k-commuting permutations, arXiv preprint arXiv:1406.3081 [math.CO], 2014-2015.
- William A. Stein's The Modular Forms Database, PARI-readable dimension tables for Gamma_0(N)
- Eric Weisstein's World of Mathematics, Clique
- Eric Weisstein's World of Mathematics, Hilbert Number
- Eric Weisstein's World of Mathematics, Sunlet Graph
- Wikipedia, Interval arithmetic
- Index entries for linear recurrences with constant coefficients, signature (2,-1).
Crossrefs
Programs
-
GAP
List([0..70],n->4*n+1); # Muniru A Asiru, Aug 08 2018
-
Haskell
a016813 = (+ 1) . (* 4) a016813_list = [1, 5 ..] -- Reinhard Zumkeller, Feb 14 2012
-
Magma
[n: n in [1..250 by 4]];
-
Maple
seq(4*k+1, k=0..100); # Wesley Ivan Hurt, Sep 28 2013
-
Mathematica
Range[1, 237, 4] (* Vladimir Joseph Stephan Orlovsky, May 26 2011 *) Table[4 n + 1, {n, 0, 20}] (* Eric W. Weisstein, Nov 29 2017 *) 4 Range[0, 20] + 1 (* Eric W. Weisstein, Nov 29 2017 *) LinearRecurrence[{2, -1}, {5, 9}, {0, 20}] (* Eric W. Weisstein, Nov 29 2017 *) CoefficientList[Series[(1 + 3 x)/(-1 + x)^2, {x, 0, 20}], x] (* Eric W. Weisstein, Nov 29 2017 *)
-
PARI
a(n)=4*n+1 \\ Charles R Greathouse IV, Mar 22 2013
-
PARI
x='x+O('x^100); Vec((1+3*x)/(1-x)^2) \\ Altug Alkan, Oct 22 2015
-
Scala
(0 to 59).map(4 * + 1) // _Alonso del Arte, Aug 08 2018
Formula
a(n) = A005408(2*n).
Sum_{n>=0} (-1)^n/a(n) = (1/(4*sqrt(2)))*(Pi+2*log(sqrt(2)+1)) = A181048 [Jolley]. - Benoit Cloitre, Apr 05 2002 [corrected by Amiram Eldar, Jul 30 2023]
G.f.: (1+3*x)/(1-x)^2. - Paul Barry, Feb 27 2003 [corrected for offset 0 by Wolfdieter Lang, Oct 03 2014]
(1 + 5*x + 9*x^2 + 13*x^3 + ...) = (1 + 2*x + 3*x^2 + ...) / (1 - 3*x + 9*x^2 - 27*x^3 + ...). - Gary W. Adamson, Jul 03 2003
a(n) = A004766(n-1). - R. J. Mathar, Oct 26 2008
a(n) = 2*a(n-1) - a(n-2); a(0)=1, a(1)=5. a(n) = 4 + a(n-1). - Philippe Deléham, Nov 03 2008
A056753(a(n)) = 3. - Reinhard Zumkeller, Aug 23 2009
a(n) = 8*n - 2 - a(n-1) for n > 0, a(0) = 1. - Vincenzo Librandi, Nov 20 2010
The identity (4*n+1)^2 - (4*n^2+2*n)*(2)^2 = 1 can be written as a(n)^2 - A002943(n)*2^2 = 1. - Vincenzo Librandi, Mar 11 2009 - Nov 25 2012
A089911(6*a(n)) = 8. - Reinhard Zumkeller, Jul 05 2013
a(n) = A004767(n) - 2. - Jean-Bernard François, Sep 27 2013
From Ilya Gutkovskiy, Jul 29 2016: (Start)
E.g.f.: (1 + 4*x)*exp(x).
a(n) = Sum_{k = 0..n} A123932(k).
a(A005098(k)) = x^2 + y^2.
Inverse binomial transform of A014480. (End)
Dirichlet g.f.: 4*Zeta(-1 + s) + Zeta(s). - Stefano Spezia, Nov 02 2018
A003602 Kimberling's paraphrases: if n = (2k-1)*2^m then a(n) = k.
1, 1, 2, 1, 3, 2, 4, 1, 5, 3, 6, 2, 7, 4, 8, 1, 9, 5, 10, 3, 11, 6, 12, 2, 13, 7, 14, 4, 15, 8, 16, 1, 17, 9, 18, 5, 19, 10, 20, 3, 21, 11, 22, 6, 23, 12, 24, 2, 25, 13, 26, 7, 27, 14, 28, 4, 29, 15, 30, 8, 31, 16, 32, 1, 33, 17, 34, 9, 35, 18, 36, 5, 37, 19, 38, 10, 39, 20, 40, 3, 41, 21, 42
Offset: 1
Comments
Fractal sequence obtained from powers of 2.
k occurs at (2*k-1)*A000079(m), m >= 0. - Robert G. Wilson v, May 23 2006
Sequence is T^(oo)(1) where T is acting on a word w = w(1)w(2)..w(m) as follows: T(w) = "1"w(1)"2"w(2)"3"(...)"m"w(m)"m+1". For instance T(ab) = 1a2b3. Thus T(1) = 112, T(T(1)) = 1121324, T(T(T(1))) = 112132415362748. - Benoit Cloitre, Mar 02 2009
Note that iterating the post-numbering operator U(w) = w(1) 1 w(2) 2 w(3) 3... produces the same limit sequence except with an additional "1" prepended, i.e., 1,1,1,2,1,3,2,4,... - Glen Whitney, Aug 30 2023
In the binary expansion of n, first swallow all zeros from the right, then add 1, and swallow the now-appearing 0 bit as well. - Ralf Stephan, Aug 22 2013
Although A264646 and this sequence initially agree in their digit-streams, they differ after 48 digits. - N. J. A. Sloane, Nov 20 2015
"[This is a] fractal because we get the same sequence after we delete from it the first appearance of all positive integers" - see Cobeli and Zaharescu link. - Robert G. Wilson v, Jun 03 2018
From Peter Munn, Jun 16 2022: (Start)
The sequence is the list of positive integers interleaved with the sequence itself. Provided the offset is suitable (which is the case here) a term of such a self-interleaved sequence is determined by the odd part of its index. Putting some of the formulas given here into words, a(n) is the position of the odd part of n in the list of odd numbers.
Applying the interleaving transform again, we get A110963.
(End)
Omitting all 1's leaves A131987 + 1. - David James Sycamore, Jul 26 2022
a(n) is also the smallest positive number not among the terms between a(a(n-1)) and a(n-1) inclusive (with a(0)=1 prepended). - Neal Gersh Tolunsky, Mar 07 2023
Examples
From _Peter Munn_, Jun 14 2022: (Start) Start of table showing the interleaving with the positive integers: n a(n) (n+1)/2 a(n/2) 1 1 1 2 1 1 3 2 2 4 1 1 5 3 3 6 2 2 7 4 4 8 1 1 9 5 5 10 3 3 11 6 6 12 2 2 (End)
References
- Michel Rigo, Formal Languages, Automata and Numeration Systems, 2 vols., Wiley, 2014. Mentions this sequence - see "List of Sequences" in Vol. 2.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- N. J. A. Sloane, Table of n, a(n) for n = 1..10000
- J.-P. Allouche and J. Shallit, The ring of k-regular sequences, II, Theoret. Computer Sci., 307 (2003), 3-29.
- Cristian Cobeli and Alexandru Zaharescu, Promenade around Pascal Triangle - Number Motives, Bull. Math. Soc. Sci. Math. Roumanie, Tome 56(104) No. 1, 2013, 73-98.
- J.-P. Delahaye, La marelle arithmétique, Pour la Science, No. 360, October 2007. In French.
- Dale Gerdemann, Plotting Adjacent Points in A003602, Kimberling's Paraphrase, YouTube Video, 2015.
- Dale Gerdemann, Plotting Adjacent Terms of A003602 Modulo Increasing Powers of 2, YouTube Video, 2015.
- Douglas E. Iannucci and Urban Larsson, Game values of arithmetic functions, arXiv:2101.07608 [math.NT], 2021.
- Jonas Kaiser, On the relationship between the Collatz conjecture and Mersenne prime numbers, arXiv preprint arXiv:1608.00862 [math.GM], 2016.
- Clark Kimberling, Numeration systems and fractal sequences, Acta Arithmetica 73 (1995) 103-117.
- Clark Kimberling, Fractal sequences
- Ralf Stephan, Some divide-and-conquer sequences ...
- Ralf Stephan, Table of generating functions
- Matty van-Son, Palindromic sequences of the Markov spectrum, arXiv:1804.10802 [math.NT], 2018.
- Eric Weisstein's World of Mathematics, Odd Part
- Index entries for sequences related to binary expansion of n
Crossrefs
Cf. A000079, A000265, A001511, A003603, A003961, A014577 (with offset 1, reduction mod 2), A025480, A035528, A048673, A101279, A110963, A117303, A126760, A181988, A220466, A249745, A253887, A337821 (2-adic valuation).
Cf. also A349134 (Dirichlet inverse), A349135 (sum with it), A349136 (Möbius transform), A349431, A349371 (inverse Möbius transform).
Cf. A264646.
Programs
-
Haskell
a003602 = (`div` 2) . (+ 1) . a000265 -- Reinhard Zumkeller, Feb 16 2012, Oct 14 2010
-
Haskell
import Data.List (transpose) a003602 = flip div 2 . (+ 1) . a000265 a003602_list = concat $ transpose [[1..], a003602_list] -- Reinhard Zumkeller, Aug 09 2013, May 23 2013
-
Maple
A003602:=proc(n) options remember: if n mod 2 = 1 then RETURN((n+1)/2) else RETURN(procname(n/2)) fi: end proc: seq(A003602(n), n=1..83); # Pab Ter nmax := 83: for m from 0 to ceil(simplify(log[2](nmax))) do for k from 1 to ceil(nmax/(m+2)) do a((2*k-1)*2^m) := k od: od: seq(a(k), k=1..nmax); # Johannes W. Meijer, Feb 04 2013 A003602 := proc(n) a := 1; for p in ifactors(n)[2] do if op(1,p) > 2 then a := a*op(1,p)^op(2,p) ; end if; end do : (a+1)/2 ; end proc: # R. J. Mathar, May 19 2016
-
Mathematica
a[n_] := Block[{m = n}, While[ EvenQ@m, m /= 2]; (m + 1)/2]; Array[a, 84] (* or *) a[1] = 1; a[n_] := a[n] = If[OddQ@n, (n + 1)/2, a[n/2]]; Array[a, 84] (* Robert G. Wilson v, May 23 2006 *) a[n_] := Ceiling[NestWhile[Floor[#/2] &, n, EvenQ]/2]; Array[a, 84] (* Birkas Gyorgy, Apr 05 2011 *) a003602 = {1}; max = 7; Do[b = {}; Do[AppendTo[b, {k, a003602[[k]]}], {k, Length[a003602]}]; a003602 = Flatten[b], {n, 2, max}]; a003602 (* L. Edson Jeffery, Nov 21 2015 *)
-
PARI
A003602(n)=(n/2^valuation(n,2)+1)/2; /* Joerg Arndt, Apr 06 2011 */
-
Python
import math def a(n): return (n/2**int(math.log(n - (n & n - 1), 2)) + 1)/2 # Indranil Ghosh, Apr 24 2017
-
Python
def A003602(n): return (n>>(n&-n).bit_length())+1 # Chai Wah Wu, Jul 08 2022
-
Scheme
(define (A003602 n) (let loop ((n n)) (if (even? n) (loop (/ n 2)) (/ (+ 1 n) 2)))) ;; Antti Karttunen, Feb 04 2015
Formula
a(n) = (A000265(n) + 1)/2.
a((2*k-1)*2^m) = k, for m >= 0 and k >= 1. - Robert G. Wilson v, May 23 2006
Inverse Weigh transform of A035528. - Christian G. Bower
G.f.: 1/x * Sum_{k>=0} x^2^k/(1-2*x^2^(k+1) + x^2^(k+2)). - Ralf Stephan, Jul 24 2003
a(2*n-1) = n and a(2*n) = a(n). - Pab Ter (pabrlos2(AT)yahoo.com), Oct 25 2005
a(A118413(n,k)) = A002024(n,k); = a(A118416(n,k)) = A002260(n,k); a(A014480(n)) = A001511(A014480(n)). - Reinhard Zumkeller, Apr 27 2006
Ordinal transform of A001511. - Franklin T. Adams-Watters, Aug 28 2006
a(n) = A249745(A126760(A003961(n))) = A249745(A253887(A048673(n))). That is, this sequence plays the same role for the numbers in array A135764 as A126760 does for the odd numbers in array A135765. - Antti Karttunen, Feb 04 2015 & Jan 19 2016
G.f. satisfies g(x) = g(x^2) + x/(1-x^2)^2. - Robert Israel, Apr 24 2015
a(n) = A025480(n-1) + 1. - R. J. Mathar, May 19 2016
a(n) = (1 + n)/2, for n odd; a(n) = a(n/2), for n even. - David James Sycamore, Jul 28 2022
a(n) = n/2^A001511(n) + 1/2. - Alan Michael Gómez Calderón, Oct 06 2023
Extensions
More terms from Pab Ter (pabrlos2(AT)yahoo.com), Oct 25 2005
A002457 a(n) = (2n+1)!/n!^2.
1, 6, 30, 140, 630, 2772, 12012, 51480, 218790, 923780, 3879876, 16224936, 67603900, 280816200, 1163381400, 4808643120, 19835652870, 81676217700, 335780006100, 1378465288200, 5651707681620, 23145088600920, 94684453367400, 386971244197200, 1580132580471900
Offset: 0
Comments
Expected number of matches remaining in Banach's modified matchbox problem (counted when last match is drawn from one of the two boxes), multiplied by 4^(n-1). - Michael Steyer, Apr 13 2001
Hankel transform is (-1)^n*A014480(n). - Paul Barry, Apr 26 2009
Convolved with A000108: (1, 1, 1, 5, 14, 42, ...) = A000531: (1, 7, 38, 187, 874, ...). - Gary W. Adamson, May 14 2009
1/a(n) is the integral of (x(1-x))^n on interval [0,1]. Apparently John Wallis computed these integrals for n=0,1,2,3,.... A004731, shifted left by one, gives numerators/denominators of related integrals (1-x^2)^n on interval [0,1]. - Marc van Leeuwen, Apr 14 2010
Extend the triangular peaks of Dyck paths of semilength n down to the baseline forming (possibly) larger and overlapping triangles. a(n) = sum of areas of these triangles. Also a(n) = triangular(n) * Catalan(n). - David Scambler, Nov 25 2010
Let H be the n X n Hilbert matrix H(i,j) = 1/(i+j-1) for 1 <= i,j <= n. Let B be the inverse matrix of H. The sum of the elements in row n of B equals a(n-1). - T. D. Noe, May 01 2011
Apparently the number of peaks in all symmetric Dyck paths with semilength 2n+1. - David Scambler, Apr 29 2013
Denominator of central elements of Leibniz's Harmonic Triangle A003506.
Central terms of triangle A116666. - Reinhard Zumkeller, Nov 02 2013
Number of distinct strings of length 2n+1 using n letters A, n letters B, and 1 letter C. - Hans Havermann, May 06 2014
Number of edges in the Hasse diagram of the poset of partitions in the n X n box ordered by containment (from Havermann's comment above, C represents the square added in the edge). - William J. Keith, Aug 18 2015
Let V(n, r) denote the volume of an n-dimensional sphere with radius r then V(n, 1/2^n) = V(n-1, 1/2^n) / a((n-1)/2) for all odd n. - Peter Luschny, Oct 12 2015
a(n) is the result of processing the n+1 row of Pascal's triangle A007318 with the method of A067056. Example: Let n=3. Given the 4th row of Pascal's triangle 1,4,6,4,1, we get 1*(4+6+4+1) + (1+4)*(6+4+1) + (1+4+6)*(4+1) + (1+4+6+4)*1 = 15+55+55+15 = 140 = a(3). - J. M. Bergot, May 26 2017
a(n) is the number of (n+1) X 2 Young tableaux with a two horizontal walls between the first and second column. If there is a wall between two cells, the entries may be decreasing; see [Banderier, Wallner 2021] and A000984 for one horizontal wall. - Michael Wallner, Jan 31 2022
a(n) is the number of facets of the symmetric edge polytope of the cycle graph on 2n+1 vertices. - Mariel Supina, May 12 2022
Diagonal of the rational function 1 / (1 - x - y)^2. - Ilya Gutkovskiy, Apr 23 2025
Examples
G.f. = 1 + 6*x + 30*x^2 + 140*x^3 + 630*x^4 + 2772*x^5 + 12012*x^6 + 51480*x^7 + ...
References
- A. T. Benjamin and J. J. Quinn, Proofs that really count: the art of combinatorial proof, M.A.A. 2003, id. 159.
- L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 83, Problem 25; p. 168, #30.
- W. Feller, An Introduction to Probability Theory and Its Applications, Vol. I.
- C. Jordan, Calculus of Finite Differences. Röttig and Romwalter, Budapest, 1939; Chelsea, NY, 1965, p. 449.
- M. Klamkin, ed., Problems in Applied Mathematics: Selections from SIAM Review, SIAM, 1990; see pp. 127-129.
- C. Lanczos, Applied Analysis. Prentice-Hall, Englewood Cliffs, NJ, 1956, p. 514.
- A. P. Prudnikov, Yu. A. Brychkov and O.I. Marichev, "Integrals and Series", Volume 1: "Elementary Functions", Chapter 4: "Finite Sums", New York, Gordon and Breach Science Publishers, 1986-1992.
- J. Ser, Les Calculs Formels des Séries de Factorielles. Gauthier-Villars, Paris, 1933, p. 92.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- J. Wallis, Operum Mathematicorum, pars altera, Oxford, 1656, pp 31,34 [Marc van Leeuwen, Apr 14 2010]
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000 [Terms 0 to 200 computed by T. D. Noe; terms 201 to 1000 by G. C. Greubel, Jan 14 2017]
- Cyril Banderier and Michael Wallner, Young Tableaux with Periodic Walls: Counting with the Density Method, Séminaire Lotharingien de Combinatoire, 85B (2021), Art. 47, 12 pp.
- Alexander Barg, Stolarsky's invariance principle for finite metric spaces, arXiv:2005.12995 [math.CO], 2020.
- W. G. Bickley and J. C. P. Miller, Numerical differentiation near the limits of a difference table, Phil. Mag., 33 (1942), 1-12 (plus tables) [Annotated scanned copy]
- Sara C. Billey, Matjaž Konvalinka, and Joshua P. Swanson, Asymptotic normality of the major index on standard tableaux, arXiv:1905.00975 [math.CO], 2019.See p. 15, Remark 4.2
- R. Chapman, Moments of Dyck paths, Discrete Math., 204 (1999), 113-117.
- Ömür Deveci and Anthony G. Shannon, Some aspects of Neyman triangles and Delannoy arrays, Mathematica Montisnigri (2021) Vol. L, 36-43.
- F. Disanto, A. Frosini, R. Pinzani and S. Rinaldi, A closed formula for the number of convex permutominoes, arXiv:math/0702550 [math.CO], 2007.
- Luca Ferrari and Emanuele Munarini, Enumeration of edges in some lattices of paths, arXiv preprint arXiv:1203.6792 [math.CO], 2012 and J. Int. Seq. 17 (2014) #14.1.5.
- Nikita Gogin and Mika Hirvensalo, On the Moments of Squared Binomial Coefficients, (2020).
- P.-Y. Huang, S.-C. Liu, and Y.-N. Yeh, Congruences of Finite Summations of the Coefficients in certain Generating Functions, The Electronic Journal of Combinatorics, 21 (2014), #P2.45.
- Milan Janjić, Pascal Matrices and Restricted Words, J. Int. Seq., Vol. 21 (2018), Article 18.5.2.
- C. Jordan, Calculus of Finite Differences, Budapest, 1939. [Annotated scans of pages 448-450 only]
- Cemil Karaçam and Alper Vural, Enumerating 2D and 3D lattice paths with arbitrary steps, Mathematica Bohemica, pp. 1-13 (2025). See p. 4.
- Bahar Kuloğlu, Engin Özkan, and Marin Marin, Fibonacci and Lucas Polynomials in n-gon, An. Şt. Univ. Ovidius Constanţa (Romania 2023) Vol. 31, No 2, 127-140.
- C. Lanczos, Applied Analysis (Annotated scans of selected pages)
- A. Petojevic and N. Dapic, The vAm(a,b,c;z) function, Preprint 2013.
- H. E. Salzer, Coefficients for numerical differentiation with central differences, J. Math. Phys., 22 (1943), 115-135.
- H. E. Salzer, Coefficients for numerical differentiation with central differences, J. Math. Phys., 22 (1943), 115-135. [Annotated scanned copy]
- J. Ser, Les Calculs Formels des Séries de Factorielles, Gauthier-Villars, Paris, 1933 [Local copy].
- J. Ser, Les Calculs Formels des Séries de Factorielles (Annotated scans of some selected pages)
- L. W. Shapiro, W.-J. Woan and S. Getu, Runs, slides and moments, SIAM J. Alg. Discrete Methods, 4 (1983), 459-466.
- Andrei K. Svinin, On some class of sums, arXiv:1610.05387 [math.CO], 2016. See p. 5.
- T. R. Van Oppolzer, Lehrbuch zur Bahnbestimmung der Kometen und Planeten, Vol. 2, Engelmann, Leipzig, 1880, p. 21.
- Eric Weisstein's World of Mathematics, Central Beta Function
- Eric Weisstein's World of Mathematics, Pi Formulas
- Y. Q. Zhao, Introduction to Probability with Applications
Crossrefs
Programs
-
Haskell
a002457 n = a116666 (2 * n + 1) (n + 1) -- Reinhard Zumkeller, Nov 02 2013
-
Magma
[Factorial(2*n+1)/Factorial(n)^2: n in [0..25]]; // Vincenzo Librandi, Oct 12 2015
-
Maple
A002457:=n->(n+1) * binomial(2*(n+1),(n+1)) / 2; seq(A002457(n), n=0..50); seq((2*n)!*coeff(series(HeunC(0,0,-2,-1/4,7/4,4*x^2),x,2*n+1),x,2*n),n=0..22); # Peter Luschny, Nov 22 2013
-
Mathematica
a[n_]:=(2*n+1)!/n!^2; Array[f, 23, 0] (* Vladimir Joseph Stephan Orlovsky, Dec 13 2008 *)
-
PARI
{a(n) = if( n<0, 0, (2*n + 1)! / n!^2)}; /* Michael Somos, Dec 09 2002 */
-
PARI
a(n) = (2*n+1)*binomial(2*n, n); \\ Altug Alkan, Apr 16 2018
-
Sage
A002457 = lambda n: binomial(n+1/2,1/2)<<2*n [A002457(n) for n in range(23)] # Peter Luschny, Sep 22 2014
Formula
G.f.: (1-4x)^(-3/2) = 1F0(3/2;;4x).
a(n-1) = binomial(2*n, n)*n/2 = binomial(2*n-1, n)*n.
a(n-1) = 4^(n-1)*Sum_{i=0..n-1} binomial(n-1+i, i)*(n-i)/2^(n-1+i).
a(n) ~ 2*Pi^(-1/2)*n^(1/2)*2^(2*n)*{1 + 3/8*n^-1 + ...}. - Joe Keane (jgk(AT)jgk.org), Nov 21 2001
(2*n+2)!/(2*n!*(n+1)!) = (n+n+1)!/(n!*n!) = 1/beta(n+1, n+1) in A061928.
Sum_{i=0..n} i * binomial(n, i)^2 = n*binomial(2*n, n)/2. - Yong Kong (ykong(AT)curagen.com), Dec 26 2000
a(n) ~ 2*Pi^(-1/2)*n^(1/2)*2^(2*n). - Joe Keane (jgk(AT)jgk.org), Jun 07 2002
a(n) = 1/Integral_{x=0..1} x^n (1-x)^n dx. - Fred W. Helenius (fredh(AT)ix.netcom.com), Jun 10 2003
E.g.f.: exp(2*x)*((1+4*x)*BesselI(0, 2*x) + 4*x*BesselI(1, 2*x)). - Vladeta Jovovic, Sep 22 2003
a(n) = Sum_{i+j+k=n} binomial(2i, i)*binomial(2j, j)*binomial(2k, k). - Benoit Cloitre, Nov 09 2003
Sum of (n+1)-th row terms of triangle A132818. - Gary W. Adamson, Sep 02 2007
Sum_{n>=0} 1/a(n) = 2*Pi/3^(3/2). - Jaume Oliver Lafont, Mar 07 2009
a(n) = Sum_{k=0..n} binomial(2k,k)*4^(n-k). - Paul Barry, Apr 26 2009
a(n) = f(n, n-3) where f is given in A034261.
a(n) = binomial(2n+2, 2) * binomial(2n, n) / binomial(n+1, 1), a(n) = binomial(n+1, 1) * binomial(2n+2, n+1) / binomial(2, 1) = binomial(2n+2, n+1) * (n+1)/2. - Rui Duarte, Oct 08 2011
G.f.: (G(0) - 1)/(4*x) where G(k) = 1 + 2*x*((2*k + 3)*G(k+1) - 1)/(k + 1). - Sergei N. Gladkovskii, Dec 03 2011 [Edited by Michael Somos, Dec 06 2013]
G.f.: 1 - 6*x/(G(0)+6*x) where G(k) = 1 + (4*x+1)*k - 6*x - (k+1)*(4*k-2)/G(k+1); (continued fraction, Euler's 1st kind, 1-step). - Sergei N. Gladkovskii, Aug 13 2012
G.f.: Q(0), where Q(k) = 1 + 4*(2*k + 1)*x*(2*k + 2 + Q(k+1))/(k+1). - Sergei N. Gladkovskii, May 10 2013 [Edited by Michael Somos, Dec 06 2013]
G.f.: G(0)/2, where G(k) = 1 + 1/(1 - 4*x*(2*k+3)/(4*x*(2*k+3) + 2*(k+1)/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, Jun 06 2013
a(n) = 2^(4n)/Sum_{k=0..n} (-1)^k*C(2n+1,n-k)/(2k+1). - Mircea Merca, Nov 12 2013
a(n) = (2*n)!*[x^(2*n)] HeunC(0,0,-2,-1/4,7/4,4*x^2) where [x^n] f(x) is the coefficient of x^n in f(x) and HeunC is the Heun confluent function. - Peter Luschny, Nov 22 2013
0 = a(n) * (16*a(n+1) - 2*a(n+2)) + a(n+1) * (a(n+2) - 6*a(n+1)) for all n in Z. - Michael Somos, Dec 06 2013
a(n) = 4^n*binomial(n+1/2, 1/2). - Peter Luschny, Apr 24 2014
a(n) = 4^n*hypergeom([-2*n,-2*n-1,1/2],[-2*n-2,1],2)*(n+1)*(2*n+1). - Peter Luschny, Sep 22 2014
a(n) = 4^n*hypergeom([-n,-1/2],[1],1). - Peter Luschny, May 19 2015
a(n) = 2*4^n*Gamma(3/2+n)/(sqrt(Pi)*Gamma(1+n)). - Peter Luschny, Dec 14 2015
Sum_{n >= 0} 2^(n+1)/a(n) = Pi, related to Newton/Euler's Pi convergence transformation series. - Tony Foster III, Jul 28 2016. See the Weisstein Pi link, eq. (23). - Wolfdieter Lang, Aug 26 2016
Boas-Buck recurrence: a(n) = (6/n)*Sum_{k=0..n-1} 4^(n-k-1)*a(k), n >= 1, and a(0) = 1. Proof from a(n) = A046521(n+1,1). See comment in A046521. - Wolfdieter Lang, Aug 10 2017
a(n) = (1/3)*Sum_{i = 0..n+1} C(n+1,i)*C(n+1,2*n+1-i)*C(3*n+2-i,n+1) = (1/3)*Sum_{i = 0..2*n+1} (-1)^(i+1)*C(2*n+1,i)*C(n+i+1,i)^2. - Peter Bala, Feb 07 2018
a(n) = (2*n+1)*binomial(2*n, n). - Kolosov Petro, Apr 16 2018
a(n) = (-4)^n*binomial(-3/2, n). - Peter Luschny, Oct 23 2018
a(n) = 1 / Sum_{s=0..n} (-1)^s * binomial(n, s) / (n+s+1). - Kolosov Petro, Jan 22 2019
a(n) = Sum_{k = 0..n} (2*k + 1)*binomial(2*n + 1, n - k). - Peter Bala, Feb 25 2019
4^n/a(n) = Integral_{x=0..1} (1 - x^2)^n. - Michael Somos, Jun 13 2019
D-finite with recurrence: 0 = a(n)*(6 + 4*n) - a(n+1)*(n + 1) for all n in Z. - Michael Somos, Jun 13 2019
Sum_{n>=0} (-1)^n/a(n) = 4*arcsinh(1/2)/sqrt(5). - Amiram Eldar, Sep 10 2020
From Jianing Song, Apr 10 2022: (Start)
G.f. for {1/a(n)}: 4*arcsin(sqrt(x)/2) / sqrt(x*(4-x)).
E.g.f. for {1/a(n)}: exp(x/4)*sqrt(Pi/x)*erf(sqrt(x)/2). (End)
G.f. for {1/a(n)}: 4*arctan(sqrt(x/(4-x))) / sqrt(x*(4-x)). - Michael Somos, Jun 17 2023
a(n) = Sum_{k = 0..n} (-1)^(n+k) * (n + 2*k + 1)*binomial(n+k, k). This is the particular case m = 1 of the identity Sum_{k = 0..m*n} (-1)^k * (n + 2*k + 1) * binomial(n+k, k) = (-1)^(m*n) * (m*n + 1) * binomial((m+1)*n+1, n). Cf. A090816 and A306290. - Peter Bala, Nov 02 2024
a(n) = (1/Pi)*(2*n + 1)*(2^(2*n + 1))*Integral_{x=0..oo} 1/(x^2 + 1)^(n + 1) dx. - Velin Yanev, Jan 28 2025
A002420 Expansion of sqrt(1 - 4*x) in powers of x.
1, -2, -2, -4, -10, -28, -84, -264, -858, -2860, -9724, -33592, -117572, -416024, -1485800, -5348880, -19389690, -70715340, -259289580, -955277400, -3534526380, -13128240840, -48932534040, -182965127280, -686119227300, -2579808294648, -9723892802904, -36734706144304
Offset: 0
Comments
Also expansion of complementary modulus k' in powers of m/4 = k^2/4.
Series reversion of x(Sum_{k>=0} a(k)x^(2k)) is x(Sum_{k>=0} C(2k)x^(2k)) where C() is Catalan numbers A000108.
The g.f. of the reciprocal sequence 1,-1/2,-1/2,... is F(1,1;-1/2;x/4). - Paul Barry, Sep 18 2008
Hankel transform is (2n+1)*(-2)^n or (-1)^n*A014480. - Paul Barry, Jan 22 2009
Equals polcoeff inverse of A000984. - Gary W. Adamson, Jun 02 2009
|a(n)| is the number of lattice paths in steps of (1,1) and (1,-1) that begin at the origin and end at (2n,0) but otherwise never touch (or cross) the x axis. Note the paths are in both the first and fourth quadrants. O.g.f. is 2xC(x)+1 where C(x) is the o.g.f. for A000108 (Catalan numbers). - Geoffrey Critzer, Jan 17 2012
Examples
sqrt(1 - 4*x) = 1 - 2*x - 2*x^2 - 4*x^3 - 10*x^4 - 28*x^5 - 84*x^6 - 264*x^7 - 858*x^8 - 2860*x^9 - ...
References
- J. M. Borwein and P. B. Borwein, Pi and the AGM, Wiley, 1987, p. 8.
- A. Fletcher, J. C. P. Miller, L. Rosenhead and L. J. Comrie, An Index of Mathematical Tables. Vols. 1 and 2, 2nd ed., Blackwell, Oxford and Addison-Wesley, Reading, MA, 1962, Vol. 1, p. 55.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- T. N. Thiele, Interpolationsrechnung. Teubner, Leipzig, 1909, p. 164.
Links
- T. D. Noe, Table of n, a(n) for n=0..200
- Alexander Barg, Stolarsky's invariance principle for finite metric spaces, arXiv:2005.12995 [math.CO], 2020.
- S. J. Cyvin, J. Brunvoll, E. Brendsdal, B. N. Cyvin and E. K. Lloyd, Enumeration of polyene hydrocarbons: a complete mathematical solution, J. Chem. Inf. Comput. Sci., Vol. 35 (1995), pp. 743-751.
- S. J. Cyvin, J. Brunvoll, E. Brendsdal, B. N. Cyvin and E. K. Lloyd, Enumeration of polyene hydrocarbons: a complete mathematical solution, J. Chem. Inf. Comput. Sci., Vol. 35 (1995), pp. 743-751. [Annotated scanned copy]
- P.-Y. Huang, S.-C. Liu, and Y.-N. Yeh, Congruences of Finite Summations of the Coefficients in certain Generating Functions, The Electronic Journal of Combinatorics, Vol. 21, No. 2 (2014), Article P2.45.
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 411.
- R. J. Mathar, The Eggenberger-Polya urn process: Probabilities of revisited ball ratios, vixra:2502.0097 (2025) Table 4
- N. J. A. Sloane, Notes on A984 and A2420-A2424.
- Jian Zhou, On Some Mathematics Related to the Interpolating Statistics, arXiv:2108.10514 [math-ph], 2021.
Crossrefs
Programs
-
Magma
[Binomial(2*n, n)/(1-2*n): n in [0..30]]; // G. C. Greubel, Aug 12 2018
-
Maple
A002420:=n->binomial(2*n, n)/(1-2*n); seq(A002420(n), n=1..30); # Wesley Ivan Hurt, May 08 2014
-
Mathematica
a[n_] := -2n(2n-2)! / n!^2; a[0] = 1; Table[a[n], {n, 0, 27}] (* Jean-François Alcover, Dec 07 2011 *) Table[If[n==0,1,-2 CatalanNumber[n-1]], {n,0,27}] (* Peter Luschny, Feb 27 2017 *) CoefficientList[Series[Sqrt[1-4x],{x,0,30}],x] (* Harvey P. Dale, Jul 04 2017 *)
-
PARI
{a(n) = binomial(2*n, n) / (1 - 2*n)} /* Michael Somos, Jul 12 2008 */
-
Sage
[catalan_number(n)*((1+n)/(1-2*n)) for n in range(30)] # G. C. Greubel, Nov 26 2018
Formula
G.f.: sqrt(1-4*x) = 1F0(-1/2;;4*x).
a(n) = binomial(2*n, n)/(1-2*n).
a(n) ~ -(1/2)*Pi^(-1/2)*n^(-3/2)*2^(2*n). - Joe Keane (jgk(AT)jgk.org), Jun 06 2002
0 = 16 * a(n) * a(k) * a(n+k+1) - 8 * a(n) * a(k) * a(n+k+2) + a(n+1) * a(k) * a(n+k+2) - a(n+1) * a(k+1) * a(n+k+1) + a(n) * a(k+1) * a(n+k+2) for all n and k. - Michael Somos, Jul 12 2008
G.f.: 2F1(1,-1/2;1;4x). - Paul Barry, Jan 22 2009
a(n) = (-1)^n * binomial(1/2,n)*4^n. - Vladimir Kruchinin, May 22 2011
G.f.: A(x) = (1-4*x)^(1/2) = 1 - 2*x - 2*x^2/G(0); G(k) = 1 - 2*x - x^2/G(k+1); (continued fraction). - Sergei N. Gladkovskii, Dec 05 2011
D-finite with recurrence: n*a(n) +2*(3-2*n)*a(n-1)=0. - R. J. Mathar, Dec 19 2011
E.g.f.: a(n) = (-1)^n*n!* [x^n] exp(-2*x)*((1 + 4*x)*BesselI(0, 2*x) + 4*x*BesselI(1, 2*x)). -Peter Luschny, Aug 25 2012
G.f.: 2/G(0), where G(k) = 1 + 1/(1 - 2*x*(2*k+1)/(2*x*(2*k+1) + (k+1)/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, May 24 2013
G.f.: 2*G(0) - 1, where G(k) = 2*x*(2*k+1) + (k+1) - 2*x*(k+1)*(2*k+3)/G(k+1); (continued fraction). - Sergei N. Gladkovskii, Jul 02 2013
a(n) = 4^n * binomial(n-3/2, -3/2). - Peter Luschny, May 06 2014
a(n) = 4^n*hypergeom([-n,3/2],[1],1). - Peter Luschny, Apr 26 2016
From Amiram Eldar, Mar 24 2022: (Start)
Sum_{n>=0} 1/a(n) = -2*Pi/(9*sqrt(3)).
Sum_{n>=0} (-1)^n/a(n) = 32/25 - 12*log(phi)/(25*sqrt(5)), where phi is the golden ratio (A001622). (End)
From Peter Bala, Mar 31 2024: (Start)
a(n) = (4^n)*Sum_{k = 0..2*n} (-1)^k*binomial(1/2, k)*binomial(1/2, 2*n - k).
(4^n)*a(n) = Sum_{k = 0..2*n} (-1)^k*a(k)*a(2*n-k).
(1/2)*Sum_{k = 0..n} a(k)*a(2*n-k) = (Catalan(n-1))^2 = A001246(n) for n >= 1.
Sum_{k = 0..2*n} a(k)*a(2*n-k) = 0 for n >= 1. (End)
Extensions
Additional comments from Michael Somos, Dec 13 2002
A054582 Array read by antidiagonals upwards: A(m,k) = 2^m * (2k+1), m,k >= 0.
1, 2, 3, 4, 6, 5, 8, 12, 10, 7, 16, 24, 20, 14, 9, 32, 48, 40, 28, 18, 11, 64, 96, 80, 56, 36, 22, 13, 128, 192, 160, 112, 72, 44, 26, 15, 256, 384, 320, 224, 144, 88, 52, 30, 17, 512, 768, 640, 448, 288, 176, 104, 60, 34, 19, 1024, 1536, 1280, 896, 576, 352, 208, 120
Offset: 0
Comments
First column of array is powers of 2, first row is odd numbers, other cells are products of these two, so every positive integer appears exactly once. [Comment edited to match the definition. - L. Edson Jeffery, Jun 05 2015]
An analogous N X N <-> N bijection based, not on the binary, but on the Fibonacci number system, is given by the Wythoff array A035513.
As an array, this sequence (hence also A135764) is the dispersion of the even positive integers. For the definition of dispersion, see the link "Interspersions and Dispersions." The fractal sequence of this dispersion is A003602. - Clark Kimberling, Dec 03 2010
Examples
Northwest corner of array A: 1 3 5 7 9 11 13 15 17 19 2 6 10 14 18 22 26 30 34 38 4 12 20 28 36 44 52 60 68 76 8 24 40 56 72 88 104 120 136 152 16 48 80 112 144 176 208 240 272 304 32 96 160 224 288 352 416 480 544 608 64 192 320 448 576 704 832 960 1088 1216 128 384 640 896 1152 1408 1664 1920 2176 2432 256 768 1280 1792 2304 2816 3328 3840 4352 4864 512 1536 2560 3584 4608 5632 6656 7680 8704 9728 [Array edited to match the definition. - _L. Edson Jeffery_, Jun 05 2015] From _Philippe Deléham_, Dec 13 2013: (Start) a(13-1)=20=2*10, so a(13)=10+A006519(20)=10+4=14. a(3-1)=3=2*1+1, so a(3)=2^(1+1)=4. (End) From _Wolfdieter Lang_, Jan 30 2019: (Start) The triangle T begins: n\k 0 1 2 3 4 5 6 7 8 9 10 ... 0: 1 1: 2 3 2: 4 6 5 3: 8 12 10 7 4: 16 24 20 14 9 5: 32 48 40 28 18 11 6: 64 96 80 56 36 22 13 7: 128 192 160 112 72 44 26 15 8: 256 384 320 224 144 88 52 30 17 9: 512 768 640 448 288 176 104 60 34 19 10: 1024 1536 1280 896 576 352 208 120 68 38 21 ... T(3, 2) = 2^1*(2*2+1) = 10. (End)
Links
- Reinhard Zumkeller, Rows n = 0..100 of triangle, flattened
- Clark Kimberling, Interspersions and Dispersions.
- Index entries for sequences that are permutations of the natural numbers
Crossrefs
Programs
-
Haskell
a054582 n k = a054582_tabl !! n !! k a054582_row n = a054582_tabl !! n a054582_tabl = iterate (\xs@(x:_) -> (2 * x) : zipWith (+) xs (iterate (`div` 2) (2 * x))) [1] a054582_list = concat a054582_tabl -- Reinhard Zumkeller, Jan 22 2013
-
Mathematica
(* Array: *) Grid[Table[2^m*(2*k + 1), {m, 0, 9}, {k, 0, 9}]] (* L. Edson Jeffery, Jun 05 2015 *) (* Array antidiagonals flattened: *) Flatten[Table[2^(m - k)*(2*k + 1), {m, 0, 9}, {k, 0, m}]] (* L. Edson Jeffery, Jun 05 2015 *)
-
PARI
T(m,k)=(2*k+1)<
Charles R Greathouse IV, Jun 21 2017
Formula
As a sequence, if n is a triangular number, then a(n)=a(n-A002024(n))+2, otherwise a(n)=2*a(n-A002024(n)-1).
a(n) = A075300(n-1)+1.
Recurrence for the sequence: if a(n-1)=2*k is even, then a(n)=k+A006519(2*k); if a(n-1)=2*k+1 is odd, then a(n)=2^(k+1), a(0)=1. - Philippe Deléham, Dec 13 2013
The triangle is T(n, k) = A(n-k, k) = 2^(n-k)*(2*k+1), for n >= 0 and k = 0..n. - Wolfdieter Lang, Jan 30 2019
Extensions
Offset corrected by Reinhard Zumkeller, Jan 22 2013
A118413
Triangle read by rows: T(n,k) = (2*n-1)*2^(k-1), 0
1, 3, 6, 5, 10, 20, 7, 14, 28, 56, 9, 18, 36, 72, 144, 11, 22, 44, 88, 176, 352, 13, 26, 52, 104, 208, 416, 832, 15, 30, 60, 120, 240, 480, 960, 1920, 17, 34, 68, 136, 272, 544, 1088, 2176, 4352, 19, 38, 76, 152, 304, 608, 1216, 2432, 4864, 9728, 21, 42, 84, 168
Offset: 1
Comments
Examples
1 3 6 5 10 20 7 14 28 56 9 18 36 72 144 11 22 44 88 176 352 13 26 52 104 208 416 832 15 30 60 120 240 480 960 1920 17 34 68 136 272 544 1088 2176 4352 19 38 76 152 304 608 1216 2432 4864 9728 ...
Crossrefs
Programs
-
Mathematica
Select[Flatten[Table[(2n-1)2^(k-1),{n,20},{k,0,n}]],IntegerQ] (* Harvey P. Dale, Jan 17 2024 *)
-
Python
from math import isqrt, comb def A118413(n): a = (m:=isqrt(k:=n<<1))+(k>m*(m+1)) return ((a<<1)-1)<
Chai Wah Wu, Jun 20 2025
A118416 Triangle read by rows: T(n,k) = (2*k-1)*2^(n-1), 0 < k <= n.
1, 2, 6, 4, 12, 20, 8, 24, 40, 56, 16, 48, 80, 112, 144, 32, 96, 160, 224, 288, 352, 64, 192, 320, 448, 576, 704, 832, 128, 384, 640, 896, 1152, 1408, 1664, 1920, 256, 768, 1280, 1792, 2304, 2816, 3328, 3840, 4352, 512, 1536, 2560, 3584, 4608, 5632, 6656, 7680
Offset: 1
Comments
T(n,1) = A000079(n-1);
T(n,2) = A007283(n-1) for n > 1;
T(n,3) = A020714(n-1) for n > 2;
T(n,4) = A005009(n-1) for n > 3;
T(n,5) = A005010(n-1) for n > 4;
T(n,n-1) = A118417(n-1) for n > 1;
The alternating row sums, Sum_{k=1..n} (-1)^(k+1)*T(n,k), are: (a) in odd rows, the central term, T(n,(n+1)/2) = A058962((n-1)/2); (b) in even rows, the negation of the average of the two central terms, -(T(2n,n) + T(2n,+1))/2 = -A018215(m/2). The absolute values of the alternating row sums give the plain row means, Sum_{k=1..n} T(n,k)/n; the alternating sign row means are (-2)^(n-1). - Gregory Gerard Wojnar, Feb 10 2024
Examples
Triangle begins: 1; 2, 6; 4, 12, 20; 8, 24, 40, 56; 16, 48, 80, 112, 144; 32, 96, 160, 224, 288, 352; 64, 192, 320, 448, 576, 704, 832;
Links
- Reinhard Zumkeller, Rows n = 1..100 of triangle, flattened
Programs
-
Haskell
a118416 n k = a118416_tabl !! (n-1) !! (k-1) a118416_row 1 = [1] a118416_row n = (map (* 2) $ a118416_row (n-1)) ++ [a014480 (n-1)] a118416_tabl = map a118416_row [1..] -- Reinhard Zumkeller, Jan 22 2012
-
Maple
A118416 := proc(n,k) 2^(n-1)*(2*k-1) ; end proc: # R. J. Mathar, Sep 04 2011
-
Mathematica
Flatten[Table[(2k-1)2^(n-1),{n,10},{k,n}]] (* Harvey P. Dale, Aug 26 2014 *)
-
Python
from math import isqrt def A118416(n): return (a:=(m:=isqrt(k:=n<<1))+(k>m*(m+1)))*(1-a)+(n<<1)-1<
Chai Wah Wu, Jun 20 2025
Formula
T(n,k) = 2*T(n-1,k), 1 <= k < n; T(n,n) = A014480(n-1).
A053088 a(n) = 3*a(n-2) + 2*a(n-3) for n > 2, a(0)=1, a(1)=0, a(2)=3.
1, 0, 3, 2, 9, 12, 31, 54, 117, 224, 459, 906, 1825, 3636, 7287, 14558, 29133, 58248, 116515, 233010, 466041, 932060, 1864143, 3728262, 7456549, 14913072, 29826171, 59652314, 119304657, 238609284, 477218599, 954437166, 1908874365
Offset: 0
Comments
Growth of happy bug population in GCSE math course work assignment.
The generalized (3,2)-Padovan sequence p(3,2;n). See the W. Lang link under A000931. - Wolfdieter Lang, Jun 25 2010
With offset 1: a(n) = -2^n*Sum_{k=0..n} k^p*q^k for p=1, q=-1/2. See also A232603 (p=2, q=-1/2), A232604 (p=3, q=-1/2). - Stanislav Sykora, Nov 27 2013
From Paul Curtz, Nov 02 2021 (Start)
a(n-2) difference table (from 0, 0, a(n)):
0 0 1 0 3 2 9 12 31 54 ...
0 1 -1 3 -1 7 3 19 23 63 ...
1 -2 4 -4 8 -4 16 4 40 44 ...
-3 6 -8 12 -12 20 -12 36 4 84 ...
9 -14 20 -24 32 -32 48 -32 80 0 ...
-23 34 -44 56 -64 80 -80 112 -80 176 ...
57 -78 100 -120 144 -160 192 -192 256 -192 ...
... .
The signature is valid for every row.
a(n-2) + a(n-1) = A001045(n).
a(n-2) + a(n+3) = see A144472(n+1).
Second subdiagonal: 1, 6, 20, 56, 144, 352, ... = A014480(n).
Main diagonal: A001787(n) = -first and -third upper diagonals.
Links
- Stanislav Sykora, Table of n, a(n) for n = 0..1000
- Paul Barry, Jacobsthal Decompositions of Pascal's Triangle, Ternary Trees, and Alternating Sign Matrices, Journal of Integer Sequences, 19, 2016, #16.3.5.
- Iwan Duursma, Xiao Li, and Hsin-Po Wang, Multilinear Algebra for Distributed Storage, arXiv:2006.08911 [cs.IT], 2020.
- Index entries for linear recurrences with constant coefficients, signature (0,3,2).
Crossrefs
Programs
-
Mathematica
CoefficientList[Series[1/(1 - 3 x^2 - 2 x^3), {x, 0, 32}], x] (* Michael De Vlieger, Sep 30 2019 *)
-
PARI
c(n)=(2^(n+1)-(-1)^n*(3*n+2))/9; a(n)=c(n+1); \\ Stanislav Sykora, Nov 27 2013
Formula
G.f.: 1 / (1-3*x^2-2*x^3).
With offset 1: a(1)=1; a(n) = 2*a(n-1) - (-1)^n*n; a(n) = (1/9)*(2^(n+1) - (-1)^n*(3*n+2)). - Benoit Cloitre, Nov 02 2002
a(n) = Sum_{k=0..floor(n/2)} A078008(n-2k). - Paul Barry, Nov 24 2003
a(n) = Sum_{k=0..floor(n/2)} binomial(k, n-2k)*3^k*(2/3)^(n-2k). - Paul Barry, Oct 16 2004
a(n) = Sum_{k=0..n} A078008(k)*(1 - (-1)^(n+k-1))/2. - Paul Barry, Apr 16 2005
a(n) = ( 2^(n+2) + (-1)^n*(3*n+5) )/9 (see also the B. Cloitre comment above). From the o.g.f. 1/(1-3*x^2-2*x^3) = 1/((1-2*x)*(1+x)^2) = (3/(1+x)^2 + 2/(1+x) + 4/(1-2*x))/9. - Wolfdieter Lang, Jun 25 2010
From Wolfdieter Lang, Aug 26 2010: (Start)
a(n) = a(n-1) + 2*a(n-2) + (-1)^n for n > 1, a(0)=1, a(1)=0.
Due to the identity for the o.g.f. A(x): A(x) = x*(1+2*x)*A(x) + 1/(1+x).
(This recurrence was observed by Gary Detlefs in a 08/25/10 e-mail to the author.) (End)
G.f.: Sum_{n>=0} binomial(3*n,n)*x^n / (1+x)^(3*n+3). - Paul D. Hanna, Mar 03 2012
E.g.f.: 1 + (1/9)*(exp(-x)*(3*x - 2) + 2*exp(2*x)). - Stefano Spezia, Sep 27 2019
Extensions
More terms from James Sellers, Feb 28 2000 and Christian G. Bower, Feb 29 2000
A073345 Table T(n,k), read by ascending antidiagonals, giving the number of rooted plane binary trees of size n and height k.
1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 6, 0, 0, 0, 0, 0, 0, 0, 6, 8, 0, 0, 0, 0, 0, 0, 0, 4, 20, 0, 0, 0, 0, 0, 0, 0, 0, 1, 40, 16, 0, 0, 0, 0, 0, 0, 0, 0, 0, 68, 56, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 94, 152, 32, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 114, 376, 144, 0, 0, 0, 0, 0, 0, 0
Offset: 0
Examples
The top-left corner of this square array is 1 0 0 0 0 0 0 0 0 ... 0 1 0 0 0 0 0 0 0 ... 0 0 2 1 0 0 0 0 0 ... 0 0 0 4 6 6 4 1 0 ... 0 0 0 0 8 20 40 68 94 ... E.g. we have A000108(3) = 5 binary trees built from 3 non-leaf (i.e. branching) nodes: _______________________________3 ___\/__\/____\/__\/____________2 __\/____\/__\/____\/____\/_\/__1 _\/____\/____\/____\/____\./___0 The first four have height 3 and the last one has height 2, thus T(3,3) = 4, T(3,2) = 1 and T(3,any other value of k) = 0.
References
- Luo Jian-Jin, Catalan numbers in the history of mathematics in China, in Combinatorics and Graph Theory, (Yap, Ku, Lloyd, Wang, Editors), World Scientific, River Edge, NJ, 1995.
Links
- Alois P. Heinz, Antidiagonals n = 0..200, flattened
- Henry Bottomley and Antti Karttunen, Notes concerning diagonals of the square arrays A073345 and A073346.
- Andrew Odlyzko, Analytic methods in asymptotic enumeration.
Crossrefs
Programs
-
Maple
A073345 := n -> A073345bi(A025581(n), A002262(n)); A073345bi := proc(n,k) option remember; local i,j; if(0 = n) then if(0 = k) then RETURN(1); else RETURN(0); fi; fi; if(0 = k) then RETURN(0); fi; 2 * add(A073345bi(n-i-1,k-1) * add(A073345bi(i,j),j=0..(k-1)),i=0..floor((n-1)/2)) + 2 * add(A073345bi(n-i-1,k-1) * add(A073345bi(i,j),j=0..(k-2)),i=(floor((n-1)/2)+1)..(n-1)) - (`mod`(n,2))*(A073345bi(floor((n-1)/2),k-1)^2); end; A025581 := n -> binomial(1+floor((1/2)+sqrt(2*(1+n))),2) - (n+1); A002262 := n -> n - binomial(floor((1/2)+sqrt(2*(1+n))),2);
-
Mathematica
a[0, 0] = 1; a[n_, k_]/;k
2^n-1 := 0; a[n_, k_]/;1 <= n <= k <= 2^n-1 := a[n, k] = Sum[a[n-1, k-1-i](2Sum[ a[j, i], {j, 0, n-2}]+a[n-1, i]), {i, 0, k-1}]; Table[a[n, k], {n, 0, 9}, {k, 0, 9}] (* or *) a[0] = 0; a[1] = 1; a[n_]/;n>=2 := a[n] = Expand[1 + x a[n-1]^2]; gfT[n_] := a[n]-a[n-1]; Map[CoefficientList[ #, x, 8]&, Table[gfT[n], {n, 9}]/.{x^i_/;i>=9 ->0}] (Callan)
Formula
(See the Maple code below. Is there a nicer formula?)
This table was known to the Chinese mathematician Ming An-Tu, who gave the following recurrence in the 1730s. a(0, 0) = 1, a(n, k) = Sum[a(n-1, k-1-i)( 2*Sum[ a(j, i), {j, 0, n-2}]+a(n-1, i) ), {i, 0, k-1}]. - David Callan, Aug 17 2004
The generating function for row n, T_n(x):=Sum[T(n, k)x^k, k>=0], is given by T_n = a(n)-a(n-1) where a(n) is defined by the recurrence a(0)=0, a(1)=1, a(n) = 1 + x a(n-1)^2 for n>=2. - David Callan, Oct 08 2005
Comments
Examples
References
Links
Crossrefs
Programs
Haskell
Haskell
MATLAB
Magma
Maple
Mathematica
PARI
PARI
PARI
PARI
Python
Python
Python
Sage
Scheme
Formula
Extensions