cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 32 results. Next

A209268 Inverse permutation A054582.

Original entry on oeis.org

1, 2, 3, 4, 6, 5, 10, 7, 15, 9, 21, 8, 28, 14, 36, 11, 45, 20, 55, 13, 66, 27, 78, 12, 91, 35, 105, 19, 120, 44, 136, 16, 153, 54, 171, 26, 190, 65, 210, 18, 231, 77, 253, 34, 276, 90, 300, 17, 325, 104, 351, 43, 378, 119, 406, 25, 435, 135, 465, 53, 496, 152
Offset: 1

Views

Author

Boris Putievskiy, Jan 15 2013

Keywords

Comments

Permutation of the natural numbers.
a(n) is a pairing function: a function that reversibly maps Z^{+} x Z^{+} onto Z^{+}, where Z^{+} is the set of integer positive numbers.

Examples

			The start of the sequence for n = 1..32 as table, distributed by exponent of highest power of 2 dividing n:
   |   Exponent of highest power of 2 dividing n
n  |--------------------------------------------------
   |    0      1      2       3      4         5    ...
------------------------------------------------------
1  |....1
2  |...........2
3  |....3
4  |..................4
5  |....6
6  |...........5
7  |...10
8  |..........................7
9  |...15
10 |...........9
11 |...21
12 |..................8
13 |...28
14 |..........14
15 |...36
16 |................................11
17 |...45
18 |..........20
19 |...55
20 |.................13
21 |...66
22 |..........27
23 |...78
24 |................................12
25 |...91
26 |..........35
27 |..105
28 |.................19
29 |..120
30 |..........44
31 |..136
32 |.........................................16
. . .
Let r_c be number row inside the column number c.
r_c = (n+2^c)/2^(c+1).
The column number 0 contains numbers r_0*(r_0+1)/2,     A000217,
The column number 1 contains numbers r_1*(r_1+3)/2,     A000096,
The column number 2 contains numbers r_2*(r_2+5)/2 + 1, A034856,
The column number 3 contains numbers r_3*(r_3+7)/2 + 3, A055998,
The column number 4 contains numbers r_4*(r_4+9)/2 + 6, A046691.
		

Crossrefs

Programs

  • Mathematica
    a[n_] := (v = IntegerExponent[n, 2]; (1/2)*(((1/2)*(n/2^v + 1) + v)^2 + (1/2)*(n/2^v + 1) - v)); Table[a[n], {n, 1, 55}] (* Jean-François Alcover, Jan 15 2013, from 1st formula *)
  • Python
    f = open("result.csv", "w")
    def A007814(n):
    ### author        Richard J. Mathar 2010-09-06 (Start)
    ### http://oeis.org/wiki/User:R._J._Mathar/oeisPy/oeisPy/oeis_bulk.py
            a = 0
            nshft = n
            while (nshft %2 == 0):
                    a += 1
                    nshft >>= 1
            return a
    ###(End)
    for  n in range(1,10001):
         x = A007814(n)
         y = (n+2**x)/2**(x+1)
         m = ((x+y)**2-x+y)/2
         f.write('%d;%d;%d;%d;\n' % (n, x, y, m))
    f.close()

Formula

a(n) = (((A003602)+A007814(n))^2 - A007814(n) + A003602(n))/2.
a(n) = ((x+y)^2-x+y)/2, where x = max {k: 2^k | n}, y = (n+2^x)/2^(x+1).

A075300 Array A read by antidiagonals upwards: A(n, k) = array A054582(n,k) - 1 = 2^n*(2*k+1) - 1 with n,k >= 0.

Original entry on oeis.org

0, 1, 2, 3, 5, 4, 7, 11, 9, 6, 15, 23, 19, 13, 8, 31, 47, 39, 27, 17, 10, 63, 95, 79, 55, 35, 21, 12, 127, 191, 159, 111, 71, 43, 25, 14, 255, 383, 319, 223, 143, 87, 51, 29, 16, 511, 767, 639, 447, 287, 175, 103, 59, 33, 18, 1023, 1535, 1279, 895, 575, 351, 207, 119
Offset: 0

Views

Author

Antti Karttunen, Sep 12 2002

Keywords

Comments

From Philippe Deléham, Feb 19 2014: (Start)
A(0,k) = 2*k = A005843(k),
A(1,k) = 4*k + 1 = A016813(k),
A(2,k) = 8*k + 3 = A017101(k),
A(n,0) = A000225(n),
A(n,1) = A153893(n),
A(n,2) = A153894(n),
A(n,3) = A086224(n),
A(n,4) = A052996(n+2),
A(n,5) = A086225(n),
A(n,6) = A198274(n),
A(n,7) = A238087(n),
A(n,8) = A198275(n),
A(n,9) = A198276(n),
A(n,10) = A171389(n). (End)
A permutation of the nonnegative integers. - Alzhekeyev Ascar M, Jun 05 2016
The values in array row n, when expressed in binary, have n trailing 1-bits. - Ruud H.G. van Tol, Mar 18 2025

Examples

			The array A begins:
   0    2    4    6    8   10   12   14   16   18 ...
   1    5    9   13   17   21   25   29   33   37 ...
   3   11   19   27   35   43   51   59   67   75 ...
   7   23   39   55   71   87  103  119  135  151 ...
  15   47   79  111  143  175  207  239  271  303 ...
  31   95  159  223  287  351  415  479  543  607 ...
  ... - _Philippe Deléham_, Feb 19 2014
From _Wolfdieter Lang_, Jan 31 2019: (Start)
The triangle T begins:
   n\k   0    1    2   3   4   5   6   7  8  9 10 ...
   0:    0
   1:    1    2
   2:    3    5    4
   3:    7   11    9   6
   4:   15   23   19  13   8
   5    31   47   39  27  17  10
   6:   63   95   79  55  35  21  12
   7:  127  191  159 111  71  43  25  14
   8:  255  383  319 223 143  87  51  29 16
   9:  511  767  639 447 287 175 103  59 33 18
  10: 1023 1535 1279 895 575 351 207 119 67 37 20
  ...
T(3, 1) = 2^2*(2*1+1) - 1 = 12 - 1 = 11.  (End)
		

Crossrefs

Inverse permutation: A075301. Transpose: A075302. The X-projection is given by A007814(n+1) and the Y-projection A025480.

Programs

  • Maple
    A075300bi := (x,y) -> (2^x * (2*y + 1))-1;
    A075300 := n -> A075300bi(A025581(n), A002262(n));
    A002262 := n -> n - binomial(floor((1/2)+sqrt(2*(1+n))),2);
    A025581 := n -> binomial(1+floor((1/2)+sqrt(2*(1+n))),2) - (n+1);
  • Mathematica
    Table[(2^# (2 k + 1)) - 1 &[m - k], {m, 0, 10}, {k, 0, m}] (* Michael De Vlieger, Jun 05 2016 *)

Formula

From Wolfdieter Lang, Jan 31 2019: (Start)
Array A(n, k) = 2^n*(2*k+1) - 1, for n >= 0 and m >= 0.
The triangle is T(n, k) = A(n-k, k) = 2^(n-k)*(2*k+1) - 1, n >= 0, k=0..n.
See also A054582 after subtracting 1. (End)
From Ruud H.G. van Tol, Mar 17 2025: (Start)
A(0, k) is even. For n > 0, A(n, k) is odd and (3 * A(n, k) + 1) / 2 = A(n-1, 3*k+1).
A(n, k) = 2^n - 1 (mod 2^(n+1)) (equivalent to the comment about trailing 1-bits). (End)

A048720 Multiplication table {0..i} X {0..j} of binary polynomials (polynomials over GF(2)) interpreted as binary vectors, then written in base 10; or, binary multiplication without carries.

Original entry on oeis.org

0, 0, 0, 0, 1, 0, 0, 2, 2, 0, 0, 3, 4, 3, 0, 0, 4, 6, 6, 4, 0, 0, 5, 8, 5, 8, 5, 0, 0, 6, 10, 12, 12, 10, 6, 0, 0, 7, 12, 15, 16, 15, 12, 7, 0, 0, 8, 14, 10, 20, 20, 10, 14, 8, 0, 0, 9, 16, 9, 24, 17, 24, 9, 16, 9, 0, 0, 10, 18, 24, 28, 30, 30, 28, 24, 18, 10, 0, 0, 11, 20, 27, 32, 27, 20, 27, 32, 27, 20, 11, 0
Offset: 0

Views

Author

Antti Karttunen, Apr 26 1999

Keywords

Comments

Essentially same as A091257 but computed starting from offset 0 instead of 1.
Each polynomial in GF(2)[X] is encoded as the number whose binary representation is given by the coefficients of the polynomial, e.g., 13 = 2^3 + 2^2 + 2^0 = 1101_2 encodes 1*X^3 + 1*X^2 + 0*X^1 + 1*X^0 = X^3 + X^2 + X^0. - Antti Karttunen and Peter Munn, Jan 22 2021
To listen to this sequence, I find instrument 99 (crystal) works well with the other parameters defaulted. - Peter Munn, Nov 01 2022

Examples

			Top left corner of array:
  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0 ...
  0  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 ...
  0  2  4  6  8 10 12 14 16 18 20 22 24 26 28 30 ...
  0  3  6  5 12 15 10  9 24 27 30 29 20 23 18 17 ...
  ...
From _Antti Karttunen_ and _Peter Munn_, Jan 23 2021: (Start)
Multiplying 10 (= 1010_2) and 11 (= 1011_2), in binary results in:
     1011
  *  1010
  -------
   c1011
  1011
  -------
  1101110  (110 in decimal),
and we see that there is a carry-bit (marked c) affecting the result.
In carryless binary multiplication, the second part of the process (in which the intermediate results are summed) looks like this:
    1011
  1011
  -------
  1001110  (78 in decimal).
(End)
		

Crossrefs

Cf. A051776 (Nim-product), A091257 (subtable).
Carryless multiplication in other bases: A325820 (3), A059692 (10).
Ordinary {0..i} * {0..j} multiplication table: A004247 and its differences from this: A061858 (which lists further sequences related to presence/absence of carry in binary multiplication).
Carryless product of the prime factors of n: A234741.
Binary irreducible polynomials ("X-primes"): A014580, factorization table: A256170, table of "X-powers": A048723, powers of 3: A001317, rearranged subtable with distinct terms (comparable to A054582): A277820.
See A014580 for further sequences related to the difference between factorization into GF(2)[X] irreducibles and ordinary prime factorization of the integer encoding.
Row/column 3: A048724 (even bisection of A003188), 5: A048725, 6: A048726, 7: A048727; main diagonal: A000695.
Associated additive operation: A003987.
Equivalent sequences, as compared with standard integer multiplication: A048631 (factorials), A091242 (composites), A091255 (gcd), A091256 (lcm), A280500 (division).
See A091202 (and its variants) and A278233 for maps from/to ordinary multiplication.
See A115871, A115872 and A277320 for tables related to cross-domain congruences.

Programs

  • Maple
    trinv := n -> floor((1+sqrt(1+8*n))/2); # Gives integral inverses of the triangular numbers
    # Binary multiplication of nn and mm, but without carries (use XOR instead of ADD):
    Xmult := proc(nn,mm) local n,m,s; n := nn; m := mm; s := 0; while (n > 0) do if(1 = (n mod 2)) then s := XORnos(s,m); fi; n := floor(n/2); # Shift n right one bit. m := m*2; # Shift m left one bit. od; RETURN(s); end;
  • Mathematica
    trinv[n_] := Floor[(1 + Sqrt[1 + 8*n])/2];
    Xmult[nn_, mm_] := Module[{n = nn, m = mm, s = 0}, While[n > 0, If[1 == Mod[n, 2], s = BitXor[s, m]]; n = Floor[n/2]; m = m*2]; Return[s]];
    a[n_] := Xmult[(trinv[n] - 1)*((1/2)*trinv[n] + 1) - n, n - (trinv[n]*(trinv[n] - 1))/2];
    Table[a[n], {n, 0, 100}] (* Jean-François Alcover, Mar 16 2015, updated Mar 06 2016 after Maple *)
  • PARI
    up_to = 104;
    A048720sq(b,c) = fromdigits(Vec(Pol(binary(b))*Pol(binary(c)))%2, 2);
    A048720list(up_to) = { my(v = vector(1+up_to), i=0); for(a=0, oo, for(col=0, a, i++; if(i > up_to, return(v)); v[i] = A048720sq(col, a-col))); (v); };
    v048720 = A048720list(up_to);
    A048720(n) = v048720[1+n]; \\ Antti Karttunen, Feb 15 2021

Formula

a(n) = Xmult( (((trinv(n)-1)*(((1/2)*trinv(n))+1))-n), (n-((trinv(n)*(trinv(n)-1))/2)) );
T(2b, c)=T(c, 2b)=T(b, 2c)=2T(b, c); T(2b+1, c)=T(c, 2b+1)=2T(b, c) XOR c - Henry Bottomley, Mar 16 2001
For n >= 0, A003188(2n) = T(n, 3); A003188(2n+1) = T(n, 3) XOR 1, where XOR is the bitwise exclusive-or operator, A003987. - Peter Munn, Feb 11 2021

A003602 Kimberling's paraphrases: if n = (2k-1)*2^m then a(n) = k.

Original entry on oeis.org

1, 1, 2, 1, 3, 2, 4, 1, 5, 3, 6, 2, 7, 4, 8, 1, 9, 5, 10, 3, 11, 6, 12, 2, 13, 7, 14, 4, 15, 8, 16, 1, 17, 9, 18, 5, 19, 10, 20, 3, 21, 11, 22, 6, 23, 12, 24, 2, 25, 13, 26, 7, 27, 14, 28, 4, 29, 15, 30, 8, 31, 16, 32, 1, 33, 17, 34, 9, 35, 18, 36, 5, 37, 19, 38, 10, 39, 20, 40, 3, 41, 21, 42
Offset: 1

Views

Author

Keywords

Comments

Fractal sequence obtained from powers of 2.
k occurs at (2*k-1)*A000079(m), m >= 0. - Robert G. Wilson v, May 23 2006
Sequence is T^(oo)(1) where T is acting on a word w = w(1)w(2)..w(m) as follows: T(w) = "1"w(1)"2"w(2)"3"(...)"m"w(m)"m+1". For instance T(ab) = 1a2b3. Thus T(1) = 112, T(T(1)) = 1121324, T(T(T(1))) = 112132415362748. - Benoit Cloitre, Mar 02 2009
Note that iterating the post-numbering operator U(w) = w(1) 1 w(2) 2 w(3) 3... produces the same limit sequence except with an additional "1" prepended, i.e., 1,1,1,2,1,3,2,4,... - Glen Whitney, Aug 30 2023
In the binary expansion of n, first swallow all zeros from the right, then add 1, and swallow the now-appearing 0 bit as well. - Ralf Stephan, Aug 22 2013
Although A264646 and this sequence initially agree in their digit-streams, they differ after 48 digits. - N. J. A. Sloane, Nov 20 2015
"[This is a] fractal because we get the same sequence after we delete from it the first appearance of all positive integers" - see Cobeli and Zaharescu link. - Robert G. Wilson v, Jun 03 2018
From Peter Munn, Jun 16 2022: (Start)
The sequence is the list of positive integers interleaved with the sequence itself. Provided the offset is suitable (which is the case here) a term of such a self-interleaved sequence is determined by the odd part of its index. Putting some of the formulas given here into words, a(n) is the position of the odd part of n in the list of odd numbers.
Applying the interleaving transform again, we get A110963.
(End)
Omitting all 1's leaves A131987 + 1. - David James Sycamore, Jul 26 2022
a(n) is also the smallest positive number not among the terms between a(a(n-1)) and a(n-1) inclusive (with a(0)=1 prepended). - Neal Gersh Tolunsky, Mar 07 2023

Examples

			From _Peter Munn_, Jun 14 2022: (Start)
Start of table showing the interleaving with the positive integers:
   n  a(n)  (n+1)/2  a(n/2)
   1    1      1
   2    1               1
   3    2      2
   4    1               1
   5    3      3
   6    2               2
   7    4      4
   8    1               1
   9    5      5
  10    3               3
  11    6      6
  12    2               2
(End)
		

References

  • Michel Rigo, Formal Languages, Automata and Numeration Systems, 2 vols., Wiley, 2014. Mentions this sequence - see "List of Sequences" in Vol. 2.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

a(n) is the index of the column in A135764 where n appears (see also A054582).
Cf. A000079, A000265, A001511, A003603, A003961, A014577 (with offset 1, reduction mod 2), A025480, A035528, A048673, A101279, A110963, A117303, A126760, A181988, A220466, A249745, A253887, A337821 (2-adic valuation).
Cf. also A349134 (Dirichlet inverse), A349135 (sum with it), A349136 (Möbius transform), A349431, A349371 (inverse Möbius transform).
Cf. A264646.

Programs

  • Haskell
    a003602 = (`div` 2) . (+ 1) . a000265
    -- Reinhard Zumkeller, Feb 16 2012, Oct 14 2010
    
  • Haskell
    import Data.List (transpose)
    a003602 = flip div 2 . (+ 1) . a000265
    a003602_list = concat $ transpose [[1..], a003602_list]
    -- Reinhard Zumkeller, Aug 09 2013, May 23 2013
    
  • Maple
    A003602:=proc(n) options remember: if n mod 2 = 1 then RETURN((n+1)/2) else RETURN(procname(n/2)) fi: end proc:
    seq(A003602(n), n=1..83); # Pab Ter
    nmax := 83: for m from 0 to ceil(simplify(log[2](nmax))) do for k from 1 to ceil(nmax/(m+2)) do a((2*k-1)*2^m) := k od: od: seq(a(k), k=1..nmax); # Johannes W. Meijer, Feb 04 2013
    A003602 := proc(n)
        a := 1;
        for p in ifactors(n)[2] do
            if op(1,p) > 2 then
                a := a*op(1,p)^op(2,p) ;
            end if;
        end do  :
        (a+1)/2 ;
    end proc: # R. J. Mathar, May 19 2016
  • Mathematica
    a[n_] := Block[{m = n}, While[ EvenQ@m, m /= 2]; (m + 1)/2]; Array[a, 84] (* or *)
    a[1] = 1; a[n_] := a[n] = If[OddQ@n, (n + 1)/2, a[n/2]]; Array[a, 84] (* Robert G. Wilson v, May 23 2006 *)
    a[n_] := Ceiling[NestWhile[Floor[#/2] &, n, EvenQ]/2]; Array[a, 84] (* Birkas Gyorgy, Apr 05 2011 *)
    a003602 = {1}; max = 7; Do[b = {}; Do[AppendTo[b, {k, a003602[[k]]}], {k, Length[a003602]}]; a003602 = Flatten[b], {n, 2, max}]; a003602 (* L. Edson Jeffery, Nov 21 2015 *)
  • PARI
    A003602(n)=(n/2^valuation(n,2)+1)/2; /* Joerg Arndt, Apr 06 2011 */
    
  • Python
    import math
    def a(n): return (n/2**int(math.log(n - (n & n - 1), 2)) + 1)/2 # Indranil Ghosh, Apr 24 2017
    
  • Python
    def A003602(n): return (n>>(n&-n).bit_length())+1 # Chai Wah Wu, Jul 08 2022
  • Scheme
    (define (A003602 n) (let loop ((n n)) (if (even? n) (loop (/ n 2)) (/ (+ 1 n) 2)))) ;; Antti Karttunen, Feb 04 2015
    

Formula

a(n) = (A000265(n) + 1)/2.
a((2*k-1)*2^m) = k, for m >= 0 and k >= 1. - Robert G. Wilson v, May 23 2006
Inverse Weigh transform of A035528. - Christian G. Bower
G.f.: 1/x * Sum_{k>=0} x^2^k/(1-2*x^2^(k+1) + x^2^(k+2)). - Ralf Stephan, Jul 24 2003
a(2*n-1) = n and a(2*n) = a(n). - Pab Ter (pabrlos2(AT)yahoo.com), Oct 25 2005
a(A118413(n,k)) = A002024(n,k); = a(A118416(n,k)) = A002260(n,k); a(A014480(n)) = A001511(A014480(n)). - Reinhard Zumkeller, Apr 27 2006
Ordinal transform of A001511. - Franklin T. Adams-Watters, Aug 28 2006
a(n) = A249745(A126760(A003961(n))) = A249745(A253887(A048673(n))). That is, this sequence plays the same role for the numbers in array A135764 as A126760 does for the odd numbers in array A135765. - Antti Karttunen, Feb 04 2015 & Jan 19 2016
G.f. satisfies g(x) = g(x^2) + x/(1-x^2)^2. - Robert Israel, Apr 24 2015
a(n) = A181988(n)/A001511(n). - L. Edson Jeffery, Nov 21 2015
a(n) = A025480(n-1) + 1. - R. J. Mathar, May 19 2016
a(n) = A110963(2n-1) = A349135(4*n). - Antti Karttunen, Apr 18 2022
a(n) = (1 + n)/2, for n odd; a(n) = a(n/2), for n even. - David James Sycamore, Jul 28 2022
a(n) = n/2^A001511(n) + 1/2. - Alan Michael Gómez Calderón, Oct 06 2023
a(n) = A123390(A118319(n)). - Flávio V. Fernandes, Mar 02 2025

Extensions

More terms from Pab Ter (pabrlos2(AT)yahoo.com), Oct 25 2005

A014480 Expansion of g.f. (1+2*x)/(1-2*x)^2.

Original entry on oeis.org

1, 6, 20, 56, 144, 352, 832, 1920, 4352, 9728, 21504, 47104, 102400, 221184, 475136, 1015808, 2162688, 4587520, 9699328, 20447232, 42991616, 90177536, 188743680, 394264576, 822083584, 1711276032, 3556769792, 7381975040, 15300820992, 31675383808, 65498251264
Offset: 0

Views

Author

Keywords

Comments

Number of binary trees of size n and height n-1, computed from size n=3 onward; i.e. A014480(n) = A073345(n+3,n+2). (For sizes n=0 through 2 there are no such trees.)
Also determinant of the n X n matrix M(i,j)=binomial(2i+2j,i+j). - Benoit Cloitre, Mar 27 2004
Subdiagonal in triangle displayed in A128196. - Peter Luschny, Feb 26 2007
From Jaume Oliver Lafont, Nov 08 2009: (Start)
From two BBP-type formulas by Knuth, (page 6 of the reference)
Sum_{n>=0} 1/a(n) = 2^(1/2)*log(1+2^(1/2))
Sum_{n>=0} (-1)^n/a(n) = 2^(1/2)*atan(1/2^(1/2))
(End)
Create a triangle with first column T(n,1)=1+4*n for n=0 1 2... The remaining terms T(r,c)=T(r,c-1)+T(r-1,c-1). T(n,n+1)=a(n). - J. M. Bergot, Dec 18 2012

Examples

			(1 + 2*x)/(1-2*x)^2 = 1 + 6*x + 20*x^2 + 56*x^3 + 144*x^4 + 352*x^5 + 832*x^6 + ...
		

Crossrefs

Leftmost column of A167580 (shifted).

Programs

  • Haskell
    a014480 n = a014480_list !! n
    a014480_list = 1 : 6 : map (* 4)
       (zipWith (-) (tail a014480_list) a014480_list)
    -- Reinhard Zumkeller, Jan 22 2012
    
  • Magma
    [2^n*(2*n + 1): n in [0..35]]; // Vincenzo Librandi, Oct 20 2014
  • Maple
    a:=n-> sum(2^n*n^binomial(j,n)/2,j=1..n): seq(a(n),n=1..29); # Zerinvary Lajos, Apr 18 2009
  • Mathematica
    CoefficientList[ Series[(1 + 2*x)/(1 - 2*x)^2, {x, 0, 28}], x]
    LinearRecurrence[{4, -4}, {1, 6}, 29] (* Robert G. Wilson v, Dec 26 2012 *)
    Table[2^n (2*n + 1), {n, 0, 28}] (* Fred Daniel Kline, Oct 20 2014 *)
  • PARI
    Vec((1+2*x)/(1-2*x)^2+O(x^99)) \\ Charles R Greathouse IV, Sep 23 2012
    

Formula

a(n) = (2n+1)*2^n = 4a(n-1)-4a(n-2) = 4*A052951(n-1) = a(n-1)+A052951(n) = a(n-1)*(2+4/(2n-1)) = A054582(n, n). - Henry Bottomley, May 16 2001
E.g.f.: x*cosh(sqrt(2)*x) = x + 6x^3/3! + 20x^5/5! + 56x^7/7! +... - Ralf Stephan, Mar 03 2005
From Reinhard Zumkeller, Apr 27 2006: (Start)
a(n) = A118416(n+1,n+1) = A118413(n+1,n+1);
A001511(a(n)) = A003602(a(n));
A117303(a(n)) = a(n). (End)
Row sums of triangle A132775 - Gary W. Adamson, Aug 29 2007
Row sums of triangle A134233 - Gary W. Adamson, Oct 14 2007
From Johannes W. Meijer, Nov 23 2009: (Start)
a(n) = 3*a(n-1) - 2^(n-1)*(2*n-5) with a(0) = 1.
a(n) = 3*a(n-1) - 2*a(n-2) + 2^n with a(0) = 1 and a(1) = 6.
(End)
G.f.: -G(0) where G(k) = 1 - (2*k+2)/(1 - x/(x - (k+1)/G(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Dec 06 2012
E.g.f.: Q(0), where Q(k)= 1 + 4*x/( 1 - 1/(1 + 2*(k+1)/Q(k+1))); (continued fraction). - Sergei N. Gladkovskii, May 11 2013

A191663 Dispersion of A042948 (numbers >3, congruent to 0 or 1 mod 4), by antidiagonals.

Original entry on oeis.org

1, 4, 2, 9, 5, 3, 20, 12, 8, 6, 41, 25, 17, 13, 7, 84, 52, 36, 28, 16, 10, 169, 105, 73, 57, 33, 21, 11, 340, 212, 148, 116, 68, 44, 24, 14, 681, 425, 297, 233, 137, 89, 49, 29, 15, 1364, 852, 596, 468, 276, 180, 100, 60, 32, 18, 2729, 1705, 1193, 937, 553
Offset: 1

Views

Author

Clark Kimberling, Jun 11 2011

Keywords

Comments

Row 1: A084639.
For a background discussion of dispersions, see A191426.
...
Each of the sequences (4n, n>2), (4n+1, n>0), (3n+2, n>=0), generates a dispersion. Each complement (beginning with its first term >1) also generates a dispersion. The six sequences and dispersions are listed here:
...
A191663=dispersion of A042948 (0 or 1 mod 4 and >1)
A054582=dispersion of A005843 (0 or 2 mod 4 and >1; evens)
A191664=dispersion of A014601 (0 or 3 mod 4 and >1)
A191665=dispersion of A042963 (1 or 2 mod 4 and >1)
A191448=dispersion of A005408 (1 or 3 mod 4 and >1, odds)
A191666=dispersion of A042964 (2 or 3 mod 4)
...
EXCEPT for at most 2 initial terms (so that column 1 always starts with 1):
A191663 has 1st col A042964, all else A042948
A054582 has 1st col A005408, all else A005843
A191664 has 1st col A042963, all else A014601
A191665 has 1st col A014601, all else A042963
A191448 has 1st col A005843, all else A005408
A191666 has 1st col A042948, all else A042964
...
There is a formula for sequences of the type "(a or b mod m)", (as in the Mathematica program below):
If f(n)=(n mod 2), then (a,b,a,b,a,b,...) is given by
a*f(n+1)+b*f(n), so that "(a or b mod m)" is given by
a*f(n+1)+b*f(n)+m*floor((n-1)/2)), for n>=1.

Examples

			Northwest corner:
1...4...9....20...41
2...5...12...25...52
3...8...17...36...73
6...13..28...57...116
7...16..33...68...137
		

Crossrefs

Programs

  • Mathematica
    (* Program generates the dispersion array T of the increasing sequence f[n] *)
    r = 40; r1 = 12;  c = 40; c1 = 12;
    a = 4; b = 5; m[n_] := If[Mod[n, 2] == 0, 1, 0];
    f[n_] := a*m[n + 1] + b*m[n] + 4*Floor[(n - 1)/2]
    Table[f[n], {n, 1, 30}]  (* A042948: (4+4k,5+4k) *)
    mex[list_] := NestWhile[#1 + 1 &, 1, Union[list][[#1]] <= #1 &, 1, Length[Union[list]]]
    rows = {NestList[f, 1, c]};
    Do[rows = Append[rows, NestList[f, mex[Flatten[rows]], r]], {r}];
    t[i_, j_] := rows[[i, j]];
    TableForm[Table[t[i, j], {i, 1, 10}, {j, 1, 10}]]
    (* A191663 *)
    Flatten[Table[t[k, n - k + 1], {n, 1, c1}, {k, 1, n}]] (* A191663 *)

A050488 a(n) = 3*(2^n-1) - 2*n.

Original entry on oeis.org

0, 1, 5, 15, 37, 83, 177, 367, 749, 1515, 3049, 6119, 12261, 24547, 49121, 98271, 196573, 393179, 786393, 1572823, 3145685, 6291411, 12582865, 25165775, 50331597, 100663243, 201326537, 402653127, 805306309, 1610612675, 3221225409, 6442450879, 12884901821, 25769803707
Offset: 0

Views

Author

James Sellers, Dec 26 1999

Keywords

Comments

Number of words of length n+1 where first element is from {0,1,2}, other elements are from {0,1} and sequence does not decrease (for n=2 there are 3*2^2 sequences, but 000, 100, 110, 111, 200, 210, 211 decrease, so a(2) = 12-7 = 5).
Number of subgroups of C_(2^n) X C_(2^n) (see A060724).
Starting with 1 = row sums of triangle A054582. - Gary W. Adamson, Jun 23 2008
Starting with "1" equals the eigensequence of a triangle with integer squares (1, 4, 9, 16, ...) as the left border and the rest 1's. - Gary W. Adamson, Jul 24 2010
(1 + 2x + 2x^2 + 2x^3 + ...)*(1 + 3x + 7x^2 + 15x^3 + ...) = (1 + 5x + 15x^2 + 37x^3 + ...). - Gary W. Adamson, Mar 14 2012
The partial sums of A033484. - J. M. Bergot, Oct 03 2012
Binomial transform is 0, 1, 7, 33, ... (shifted A066810); inverse binomial transform is 0, 1, 3, 3, ... (3 repeated). - R. J. Mathar, Oct 05 2012
Define a triangle by T(n,0) = n*(n+1) + 1, T(n,n) = n + 1, and T(r,c) = T(r-1,c-1) + T(r-1,c) otherwise; then a(n+1) is the sum of the terms of row n. - J. M. Bergot, Mar 30 2013
Starting with "1" are also the antidiagonal sums of the array formed by partial sums of integer squares (1, 4, 9, 16, ...). - Luciano Ancora, Apr 24 2015
Sums of 2 adjacent terms in diagonal k=2 of Eulerian triangle A008292. I.e., T(n,2)+T(n-1,2) for n > 0. Also, 4th NW-SE diagonal of A126277. In other words, a(n) = A000295(n) + A000295(n+1). - Gregory Gerard Wojnar, Sep 30 2018

Crossrefs

Programs

  • GAP
    List([0..30],n->3*(2^n-1)-2*n); # Muniru A Asiru, Oct 26 2018
    
  • Haskell
    a050488 n = sum $ zipWith (*) a000079_list (reverse $ take n a005408_list)
    -- Reinhard Zumkeller, Jul 24 2015
    
  • Magma
    [3*(2^n-1) - 2*n: n in [0..30]]; // G. C. Greubel, Oct 23 2018
    
  • Maple
    seq(coeff(series(x*(x+1)/((1-x)^2*(1-2*x)),x,n+1), x, n), n = 0 .. 30); # Muniru A Asiru, Oct 26 2018
  • Mathematica
    Table[3(2^n-1)-2n,{n,0,30}] (* or *) LinearRecurrence[{4,-5,2}, {0,1,5}, 40] (* Harvey P. Dale, Apr 09 2018 *)
  • PARI
    a(n)=3*(2^n-1)-2*n \\ Charles R Greathouse IV, Sep 24 2015
    
  • Python
    for n in range(0, 30): print(3*(2**n-1) - 2*n, end=', ') # Stefano Spezia, Oct 27 2018

Formula

Row sums of A125165: (1, 5, 15, 37, ...). Binomial transform of [1, 4, 6, 6, 6, ...] = [1, 5, 15, 37, ...]. 4th diagonal from the right of A126777 = (1, 5, 15, ...). - Gary W. Adamson, Dec 23 2006
a(n) = 2*a(n-1) + (2n-1). - Gary W. Adamson, Sep 30 2007
From Johannes W. Meijer, Feb 20 2009: (Start)
a(n+1) = A156920(n+1,1).
a(n+1) = A156919(n+1,1)/2^n.
a(n+1) = A142963(n+2,1)/2.
a(n) = 4a(n-1) - 5a(n-2) + 2a(n-3) for n>2 with a(0) = 0, a(1) = 1, a(2) = 5.
G.f.: z*(1+z)/((1-z)^2*(1-2*z)).
(End)
a(n) = 2*n + 2*a(n-1) - 1 (with a(0)=0). - Vincenzo Librandi, Aug 06 2010
a(n+1) = Sum_{k=0..n} A000079(k) * A005408(n-k), convolution of the powers of 2 with the odd numbers. - Reinhard Zumkeller, Mar 08 2012
E.g.f.: exp(x)*(3*exp(x) - 2*x - 3). - Stefano Spezia, May 15 2023

A135764 Distribute the natural numbers in columns based on the occurrence of "2" in each prime factorization; square array A(row,col) = 2^(row-1) * ((2*col)-1), read by descending antidiagonals.

Original entry on oeis.org

1, 3, 2, 5, 6, 4, 7, 10, 12, 8, 9, 14, 20, 24, 16, 11, 18, 28, 40, 48, 32, 13, 22, 36, 56, 80, 96, 64, 15, 26, 44, 72, 112, 160, 192, 128, 17, 30, 52, 88, 144, 224, 320, 384, 256, 19, 34, 60, 104, 176, 288, 448, 640, 768, 512, 21, 38, 68, 120, 208, 352, 576, 896, 1280, 1536, 1024, 23, 42, 76, 136, 240, 416, 704, 1152, 1792, 2560, 3072, 2048, 25, 46, 84, 152, 272, 480, 832, 1408, 2304, 3584, 5120, 6144, 4096, 27, 50, 92, 168, 304, 544, 960, 1664, 2816
Offset: 1

Views

Author

Alford Arnold, Nov 29 2007

Keywords

Comments

The array in A135764 is identical to the array in A054582 [up to the transposition and different indexing. - Clark Kimberling, Dec 03 2010; comment amended by Antti Karttunen, Feb 03 2015; please see the illustration in Example section].
The array gives a bijection between the natural numbers N and N^2. A more usual bijection is to take the natural numbers A000027 and write them in the usual OEIS square array format. However this bijection has the advantage that it can be formed by iterating the usual bijection between N and 2N. - Joshua Zucker, Nov 04 2011
The array can be used to determine the configurations of k-th Towers of Hanoi moves, by labeling odd row terms C,B,A,C,B,A,... and even row terms B,C,A,B,C,A,.... Then given k equal to or greater than term "a" in each n-th row, but less than the next row term, record the label A, B, or C for term "a". This denotes the peg position for the disc corresponding to the n-th row. For example, with k = 25, five discs are in motion since the binary for 25 = 11001, five bits. We find that 25 in row 5 is greater than 16 labeled C, but less than 48. Thus, disc 5 is on peg C. In the 4th row, 25 is greater than 24 (a C), but less than 40, so goes onto the C peg. Similarly, disc 3 is on A, 2 is on A, and disc 1 is on A. Thus, discs 2 and 3 are on peg A, while 1, 4, and 5 are on peg C. - Gary W. Adamson, Jun 22 2012
Shares with arrays A253551 and A254053 the property that A001511(n) = k for all terms n on row k and when going downward in each column, terms grow by doubling. - Antti Karttunen, Feb 03 2015
Let P be the infinite palindromic word having initial word 0 and midword sequence (1,2,3,4,...) = A000027. Row n of the array A135764 gives the positions of n-1 in S. ("Infinite palindromic word" is defined at A260390.) - Clark Kimberling, Aug 13 2015
The probability distribution series 1 = 2/3 + 4/15 + 16/255 + 256/65535 + ... + A001146(n-1)/A051179(n) governs the proportions of terms in A001511 from row n of the array. In A001511(1..15) there are ((2/3) * 15) = ten terms from row one of the array, ((4/15) * 15) = four terms from row two, and ((16/255) * 15) = one (rounded), giving one term from row three (a 4). - Gary W. Adamson, Dec 16 2021
From Gary W. Adamson, Dec 30 2021: (Start)
Subarrays representing the number of divisors of an integer can be mapped on the table. For 60, write the odd divisors on the top row: 1, 3, 5, 15. Since 60 has 12 divisors, let the left column equal 1, 2, 4, where 4 is the highest power of 2 dividing 60. Multiplying top row terms by left column terms, we get the result:
1 3 5 15
2 6 10 30
4 12 20 60. (End)

Examples

			The table begins
   1,  3,   5,   7,   9,  11,  13,  15,  17,  19,  21,  23, ...
   2,  6,  10,  14,  18,  22,  26,  30,  34,  38,  42,  46, ...
   4, 12,  20,  28,  36,  44,  52,  60,  68,  76,  84,  92, ...
   8, 24,  40,  56,  72,  88, 104, 120, 136, 152, 168, 184, ...
  16, 48,  80, 112, 144, 176, 208, 240, 272, 304, 336, 368, ...
  32, 96, 160, 224, 288, 352, 416, 480, 544, 608, 672, 736, ...
etc.
For n = 6, we have [A002260(6), A004736(6)] = [3, 1] (i.e., 6 corresponds to location 3,1 (row,col) in above table) and A(3,1) = A000079(3-1) * A005408(1-1) = 2^2 * 1 = 4.
For n = 13, we have [A002260(13), A004736(13)] = [3, 3] (13 corresponds to location 3,3 (row,col) in above table) and A(3,3) = A000079(3-1) * A005408(3-1) = 2^2 * 5 = 20.
For n = 23, we have [A002260(23), A004736(23)] = [2, 6] (23 corresponds to location 2,6) and A(2,6) = A000079(2-1) * A005408(6-1) = 2^1 * 11 = 22.
		

Crossrefs

Transpose: A054582.
Inverse permutation: A249725.
Column 1: A000079.
Row 1: A005408.
Cf. A001511 (row index), A003602 (column index, both one-based).
Related arrays: A135765, A253551, A254053, A254055.
Cf. also permutations A246675, A246676, A249741, A249811, A249812.
Cf. A260390.

Programs

  • Maple
    seq(seq(2^(j-1)*(2*(i-j)+1),j=1..i),i=1..20); # Robert Israel, Feb 03 2015
  • Mathematica
    f[n_] := Block[{i, j}, {1}~Join~Flatten@ Last@ Reap@ For[j = 1, j <= n, For[i = j, i > 0, Sow[2^(j - i - 1)*(2 i + 1)], i--], j++]]; f@ 10 (* Michael De Vlieger, Feb 03 2015 *)
  • PARI
    a(n) = {s = ceil((1 + sqrt(1 + 8*n)) / 2); r = n - binomial(s-1, 2) - 1;k = s - r - 2; 2^r * (2 * k + 1) } \\ David A. Corneth, Feb 05 2015
  • Scheme
    (define (A135764 n) (A135764bi (A002260 n) (A004736 n)))
    (define (A135764bi row col) (* (A000079 (- row 1)) (+ -1 col col)))
    ;; Antti Karttunen, Feb 03 2015
    

Formula

From Antti Karttunen, Feb 03 2015: (Start)
A(row, col) = 2^(row-1) * ((2*col)-1) = A000079(row-1) * A005408(col-1).
A(row,col) = A064989(A135765(row,A249746(col))).
A(row,col) = A(row+1,col)/2 [discarding the topmost row and halving the rest of terms gives the array back].
A(row,col) = A(row,col+1) - A000079(row) [discarding the leftmost column and subtracting 2^{row number} from the rest of terms gives the array back].
(End)
G.f.: ((2*x+1)*Sum_{i>=0} 2^i*x^(i*(i+1)/2) + 2*(1-2*x)*Sum_{i>=0} i*x^(i*(i+1)/2) + (1-6*x)*Sum_{i>=0} x^(i*(i+1)/2) - 1 - 2*x)*x/(1-2*x)^2. These sums are related to Jacobi theta functions. - Robert Israel, Feb 03 2015

Extensions

More terms from Sean A. Irvine, Nov 23 2010
Name amended and the illustration of array in the example section transposed by Antti Karttunen, Feb 03 2015

A118416 Triangle read by rows: T(n,k) = (2*k-1)*2^(n-1), 0 < k <= n.

Original entry on oeis.org

1, 2, 6, 4, 12, 20, 8, 24, 40, 56, 16, 48, 80, 112, 144, 32, 96, 160, 224, 288, 352, 64, 192, 320, 448, 576, 704, 832, 128, 384, 640, 896, 1152, 1408, 1664, 1920, 256, 768, 1280, 1792, 2304, 2816, 3328, 3840, 4352, 512, 1536, 2560, 3584, 4608, 5632, 6656, 7680
Offset: 1

Views

Author

Reinhard Zumkeller, Apr 27 2006

Keywords

Comments

Row sums give A014477: Sum_{k=1..n} T(n,k) = A014477(n-1);
central terms give A118415; T(2*k-1,k) = A058962(k-1);
T(n,1) = A000079(n-1);
T(n,2) = A007283(n-1) for n > 1;
T(n,3) = A020714(n-1) for n > 2;
T(n,4) = A005009(n-1) for n > 3;
T(n,5) = A005010(n-1) for n > 4;
T(n,n-1) = A118417(n-1) for n > 1;
T(n,n) = A014480(n-1) = A118413(n,n);
A001511(T(n,k)) = A002024(n,k);
A003602(T(n,k)) = A002260(n,k).
The alternating row sums, Sum_{k=1..n} (-1)^(k+1)*T(n,k), are: (a) in odd rows, the central term, T(n,(n+1)/2) = A058962((n-1)/2); (b) in even rows, the negation of the average of the two central terms, -(T(2n,n) + T(2n,+1))/2 = -A018215(m/2). The absolute values of the alternating row sums give the plain row means, Sum_{k=1..n} T(n,k)/n; the alternating sign row means are (-2)^(n-1). - Gregory Gerard Wojnar, Feb 10 2024

Examples

			Triangle begins:
   1;
   2,   6;
   4,  12,  20;
   8,  24,  40,  56;
  16,  48,  80, 112, 144;
  32,  96, 160, 224, 288, 352;
  64, 192, 320, 448, 576, 704, 832;
		

Crossrefs

Programs

  • Haskell
    a118416 n k = a118416_tabl !! (n-1) !! (k-1)
    a118416_row 1 = [1]
    a118416_row n = (map (* 2) $ a118416_row (n-1)) ++ [a014480 (n-1)]
    a118416_tabl = map a118416_row [1..]
    -- Reinhard Zumkeller, Jan 22 2012
    
  • Maple
    A118416 := proc(n,k) 2^(n-1)*(2*k-1) ; end proc: # R. J. Mathar, Sep 04 2011
  • Mathematica
    Flatten[Table[(2k-1)2^(n-1),{n,10},{k,n}]] (* Harvey P. Dale, Aug 26 2014 *)
  • Python
    from math import isqrt
    def A118416(n): return (a:=(m:=isqrt(k:=n<<1))+(k>m*(m+1)))*(1-a)+(n<<1)-1<Chai Wah Wu, Jun 20 2025

Formula

T(n,k) = 2*T(n-1,k), 1 <= k < n; T(n,n) = A014480(n-1).

A246675 Permutation of natural numbers: a(n) = A000079(A055396(n+1)-1) * ((2*A246277(n+1))-1).

Original entry on oeis.org

1, 2, 3, 4, 5, 8, 7, 6, 9, 16, 11, 32, 13, 10, 15, 64, 17, 128, 19, 18, 21, 256, 23, 12, 25, 14, 27, 512, 29, 1024, 31, 26, 33, 20, 35, 2048, 37, 42, 39, 4096, 41, 8192, 43, 22, 45, 16384, 47, 24, 49, 50, 51, 32768, 53, 36, 55, 66, 57, 65536, 59, 131072, 61, 38, 63, 52, 65, 262144, 67, 74, 69
Offset: 1

Views

Author

Antti Karttunen, Sep 01 2014

Keywords

Comments

Consider the square array A246278, and also A246275 which is obtained from the former when one is subtracted from each term.
In A246278 the even numbers occur at the top row, and all the rows below that contain only odd numbers, those subsequent terms in each column having been obtained by shifting all primes present in the prime factorization of number immediately above to one larger indices with A003961.
To compute a(n): we do the same process in reverse, by shifting primes in the prime factorization of n+1 step by step to smaller primes, until after k >= 0 such shifts with A064989, the result is even, with the smallest prime present being 2.
We subtract one from this even number and shift the binary expansion of the resulting odd number k positions left (i.e. multiply it with 2^k), which will be the result of a(n).
In the essence, a(n) tells which number in the array A135764 is at the same position where n is in the array A246275. As the topmost row in both arrays is A005408 (odd numbers), they are fixed, i.e., a(2n+1) = 2n+1 for all n.
A055396(n+1) tells on which row of A246275 n is, which is equal to the row of A246278 on which n+1 is.
A246277(n+1) tells in which column of A246275 n is, which is equal to the column of A246278 in which n+1 is.

Examples

			Consider 54 = 55-1. To find 55's position in array A246278, we start shifting its prime factorization 55 = 5 * 11 = p_3 * p_5, step by step: p_2 * p_4 (= 3 * 7 = 21), until we get an even number: p_1 * p_3 = 2*5 = 10.
This tells us that 55 is on row 3 and column 5 (= 10/2) of array A246278, thus 54 occurs in the same position at array A246275. In array A135764 the same position contains number (2^(3-1)) * (10-1) = 4*9 = 36, thus a(54) = 36.
		

Crossrefs

Inverse: A246676.
More recursed variants: A246677, A246683.
Even bisection halved: A246679.
Other related permutations: A054582, A135764, A246274, A246275, A246276.
a(n) differs from A156552(n+1) for the first time at n=13, where a(13) = 14, while A156552(14) = 17.

Programs

  • PARI
    A064989(n) = {my(f); f = factor(n); if((n>1 && f[1,1]==2), f[1,2] = 0); for (i=1, #f~, f[i,1] = precprime(f[i,1]-1)); factorback(f)};
    A246675(n) = { my(k=0); n++; while((n%2), n = A064989(n); k++); n--; while(k>0, n = 2*n; k--); n; };
    for(n=1, 2048, write("b246675.txt", n, " ", A246675(n)));
    
  • Scheme
    (define (A246675 n) (* (A000079 (- (A055396 (+ 1 n)) 1)) (-1+ (* 2 (A246277 (+ 1 n))))))

Formula

a(n) = A000079(A055396(n+1)-1) * ((2*A246277(n+1))-1).
As a composition of related permutations:
a(n) = A135764(A246276(n)).
a(n) = A054582(A246274(n)-1).
Other identities. For all n >= 0:
a(A005408(n)) = A005408(n). [Fixes the odd numbers.]
Showing 1-10 of 32 results. Next