cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 21 results. Next

A249725 Inverse permutation to A135764.

Original entry on oeis.org

1, 3, 2, 6, 4, 5, 7, 10, 11, 8, 16, 9, 22, 12, 29, 15, 37, 17, 46, 13, 56, 23, 67, 14, 79, 30, 92, 18, 106, 38, 121, 21, 137, 47, 154, 24, 172, 57, 191, 19, 211, 68, 232, 31, 254, 80, 277, 20, 301, 93, 326, 39, 352, 107, 379, 25, 407, 122, 436, 48, 466, 138, 497, 28, 529, 155, 562, 58, 596, 173, 631, 32, 667, 192, 704, 69, 742, 212, 781, 26, 821, 233, 862, 81
Offset: 1

Views

Author

Antti Karttunen, Nov 15 2014

Keywords

Crossrefs

Inverse: A135764.
Similar or related permutations: A209268, A246276, A246676, A249742, A249811.

Programs

Formula

a(n) = 1 + (((A003602(n)+A007814(n))^2 + A007814(n) - A003602(n))/2).
As a composition of other permutations:
a(n) = A249742(A249811(n)).
a(n) = A246276(A246676(n)).
Other identities. For all n >= 0 the following holds:
a(A005408(n)) = A000124(n). [Maps odd numbers to central polygonal numbers].
a(A000079(n)) = A000217(n+1). [Maps powers of two to triangular numbers].

A003602 Kimberling's paraphrases: if n = (2k-1)*2^m then a(n) = k.

Original entry on oeis.org

1, 1, 2, 1, 3, 2, 4, 1, 5, 3, 6, 2, 7, 4, 8, 1, 9, 5, 10, 3, 11, 6, 12, 2, 13, 7, 14, 4, 15, 8, 16, 1, 17, 9, 18, 5, 19, 10, 20, 3, 21, 11, 22, 6, 23, 12, 24, 2, 25, 13, 26, 7, 27, 14, 28, 4, 29, 15, 30, 8, 31, 16, 32, 1, 33, 17, 34, 9, 35, 18, 36, 5, 37, 19, 38, 10, 39, 20, 40, 3, 41, 21, 42
Offset: 1

Views

Author

Keywords

Comments

Fractal sequence obtained from powers of 2.
k occurs at (2*k-1)*A000079(m), m >= 0. - Robert G. Wilson v, May 23 2006
Sequence is T^(oo)(1) where T is acting on a word w = w(1)w(2)..w(m) as follows: T(w) = "1"w(1)"2"w(2)"3"(...)"m"w(m)"m+1". For instance T(ab) = 1a2b3. Thus T(1) = 112, T(T(1)) = 1121324, T(T(T(1))) = 112132415362748. - Benoit Cloitre, Mar 02 2009
Note that iterating the post-numbering operator U(w) = w(1) 1 w(2) 2 w(3) 3... produces the same limit sequence except with an additional "1" prepended, i.e., 1,1,1,2,1,3,2,4,... - Glen Whitney, Aug 30 2023
In the binary expansion of n, first swallow all zeros from the right, then add 1, and swallow the now-appearing 0 bit as well. - Ralf Stephan, Aug 22 2013
Although A264646 and this sequence initially agree in their digit-streams, they differ after 48 digits. - N. J. A. Sloane, Nov 20 2015
"[This is a] fractal because we get the same sequence after we delete from it the first appearance of all positive integers" - see Cobeli and Zaharescu link. - Robert G. Wilson v, Jun 03 2018
From Peter Munn, Jun 16 2022: (Start)
The sequence is the list of positive integers interleaved with the sequence itself. Provided the offset is suitable (which is the case here) a term of such a self-interleaved sequence is determined by the odd part of its index. Putting some of the formulas given here into words, a(n) is the position of the odd part of n in the list of odd numbers.
Applying the interleaving transform again, we get A110963.
(End)
Omitting all 1's leaves A131987 + 1. - David James Sycamore, Jul 26 2022
a(n) is also the smallest positive number not among the terms between a(a(n-1)) and a(n-1) inclusive (with a(0)=1 prepended). - Neal Gersh Tolunsky, Mar 07 2023

Examples

			From _Peter Munn_, Jun 14 2022: (Start)
Start of table showing the interleaving with the positive integers:
   n  a(n)  (n+1)/2  a(n/2)
   1    1      1
   2    1               1
   3    2      2
   4    1               1
   5    3      3
   6    2               2
   7    4      4
   8    1               1
   9    5      5
  10    3               3
  11    6      6
  12    2               2
(End)
		

References

  • Michel Rigo, Formal Languages, Automata and Numeration Systems, 2 vols., Wiley, 2014. Mentions this sequence - see "List of Sequences" in Vol. 2.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

a(n) is the index of the column in A135764 where n appears (see also A054582).
Cf. A000079, A000265, A001511, A003603, A003961, A014577 (with offset 1, reduction mod 2), A025480, A035528, A048673, A101279, A110963, A117303, A126760, A181988, A220466, A249745, A253887, A337821 (2-adic valuation).
Cf. also A349134 (Dirichlet inverse), A349135 (sum with it), A349136 (Möbius transform), A349431, A349371 (inverse Möbius transform).
Cf. A264646.

Programs

  • Haskell
    a003602 = (`div` 2) . (+ 1) . a000265
    -- Reinhard Zumkeller, Feb 16 2012, Oct 14 2010
    
  • Haskell
    import Data.List (transpose)
    a003602 = flip div 2 . (+ 1) . a000265
    a003602_list = concat $ transpose [[1..], a003602_list]
    -- Reinhard Zumkeller, Aug 09 2013, May 23 2013
    
  • Maple
    A003602:=proc(n) options remember: if n mod 2 = 1 then RETURN((n+1)/2) else RETURN(procname(n/2)) fi: end proc:
    seq(A003602(n), n=1..83); # Pab Ter
    nmax := 83: for m from 0 to ceil(simplify(log[2](nmax))) do for k from 1 to ceil(nmax/(m+2)) do a((2*k-1)*2^m) := k od: od: seq(a(k), k=1..nmax); # Johannes W. Meijer, Feb 04 2013
    A003602 := proc(n)
        a := 1;
        for p in ifactors(n)[2] do
            if op(1,p) > 2 then
                a := a*op(1,p)^op(2,p) ;
            end if;
        end do  :
        (a+1)/2 ;
    end proc: # R. J. Mathar, May 19 2016
  • Mathematica
    a[n_] := Block[{m = n}, While[ EvenQ@m, m /= 2]; (m + 1)/2]; Array[a, 84] (* or *)
    a[1] = 1; a[n_] := a[n] = If[OddQ@n, (n + 1)/2, a[n/2]]; Array[a, 84] (* Robert G. Wilson v, May 23 2006 *)
    a[n_] := Ceiling[NestWhile[Floor[#/2] &, n, EvenQ]/2]; Array[a, 84] (* Birkas Gyorgy, Apr 05 2011 *)
    a003602 = {1}; max = 7; Do[b = {}; Do[AppendTo[b, {k, a003602[[k]]}], {k, Length[a003602]}]; a003602 = Flatten[b], {n, 2, max}]; a003602 (* L. Edson Jeffery, Nov 21 2015 *)
  • PARI
    A003602(n)=(n/2^valuation(n,2)+1)/2; /* Joerg Arndt, Apr 06 2011 */
    
  • Python
    import math
    def a(n): return (n/2**int(math.log(n - (n & n - 1), 2)) + 1)/2 # Indranil Ghosh, Apr 24 2017
    
  • Python
    def A003602(n): return (n>>(n&-n).bit_length())+1 # Chai Wah Wu, Jul 08 2022
  • Scheme
    (define (A003602 n) (let loop ((n n)) (if (even? n) (loop (/ n 2)) (/ (+ 1 n) 2)))) ;; Antti Karttunen, Feb 04 2015
    

Formula

a(n) = (A000265(n) + 1)/2.
a((2*k-1)*2^m) = k, for m >= 0 and k >= 1. - Robert G. Wilson v, May 23 2006
Inverse Weigh transform of A035528. - Christian G. Bower
G.f.: 1/x * Sum_{k>=0} x^2^k/(1-2*x^2^(k+1) + x^2^(k+2)). - Ralf Stephan, Jul 24 2003
a(2*n-1) = n and a(2*n) = a(n). - Pab Ter (pabrlos2(AT)yahoo.com), Oct 25 2005
a(A118413(n,k)) = A002024(n,k); = a(A118416(n,k)) = A002260(n,k); a(A014480(n)) = A001511(A014480(n)). - Reinhard Zumkeller, Apr 27 2006
Ordinal transform of A001511. - Franklin T. Adams-Watters, Aug 28 2006
a(n) = A249745(A126760(A003961(n))) = A249745(A253887(A048673(n))). That is, this sequence plays the same role for the numbers in array A135764 as A126760 does for the odd numbers in array A135765. - Antti Karttunen, Feb 04 2015 & Jan 19 2016
G.f. satisfies g(x) = g(x^2) + x/(1-x^2)^2. - Robert Israel, Apr 24 2015
a(n) = A181988(n)/A001511(n). - L. Edson Jeffery, Nov 21 2015
a(n) = A025480(n-1) + 1. - R. J. Mathar, May 19 2016
a(n) = A110963(2n-1) = A349135(4*n). - Antti Karttunen, Apr 18 2022
a(n) = (1 + n)/2, for n odd; a(n) = a(n/2), for n even. - David James Sycamore, Jul 28 2022
a(n) = n/2^A001511(n) + 1/2. - Alan Michael Gómez Calderón, Oct 06 2023
a(n) = A123390(A118319(n)). - Flávio V. Fernandes, Mar 02 2025

Extensions

More terms from Pab Ter (pabrlos2(AT)yahoo.com), Oct 25 2005

A054582 Array read by antidiagonals upwards: A(m,k) = 2^m * (2k+1), m,k >= 0.

Original entry on oeis.org

1, 2, 3, 4, 6, 5, 8, 12, 10, 7, 16, 24, 20, 14, 9, 32, 48, 40, 28, 18, 11, 64, 96, 80, 56, 36, 22, 13, 128, 192, 160, 112, 72, 44, 26, 15, 256, 384, 320, 224, 144, 88, 52, 30, 17, 512, 768, 640, 448, 288, 176, 104, 60, 34, 19, 1024, 1536, 1280, 896, 576, 352, 208, 120
Offset: 0

Views

Author

Henry Bottomley, Apr 12 2000

Keywords

Comments

First column of array is powers of 2, first row is odd numbers, other cells are products of these two, so every positive integer appears exactly once. [Comment edited to match the definition. - L. Edson Jeffery, Jun 05 2015]
An analogous N X N <-> N bijection based, not on the binary, but on the Fibonacci number system, is given by the Wythoff array A035513.
As an array, this sequence (hence also A135764) is the dispersion of the even positive integers. For the definition of dispersion, see the link "Interspersions and Dispersions." The fractal sequence of this dispersion is A003602. - Clark Kimberling, Dec 03 2010

Examples

			Northwest corner of array A:
    1     3     5     7     9    11    13    15    17    19
    2     6    10    14    18    22    26    30    34    38
    4    12    20    28    36    44    52    60    68    76
    8    24    40    56    72    88   104   120   136   152
   16    48    80   112   144   176   208   240   272   304
   32    96   160   224   288   352   416   480   544   608
   64   192   320   448   576   704   832   960  1088  1216
  128   384   640   896  1152  1408  1664  1920  2176  2432
  256   768  1280  1792  2304  2816  3328  3840  4352  4864
  512  1536  2560  3584  4608  5632  6656  7680  8704  9728
[Array edited to match the definition. - _L. Edson Jeffery_, Jun 05 2015]
From _Philippe Deléham_, Dec 13 2013: (Start)
a(13-1)=20=2*10, so a(13)=10+A006519(20)=10+4=14.
a(3-1)=3=2*1+1, so a(3)=2^(1+1)=4. (End)
From _Wolfdieter Lang_, Jan 30 2019: (Start)
The triangle T begins:
   n\k   0    1    2   3   4   5   6   7  8  9 10 ...
   0:    1
   1:    2    3
   2:    4    6    5
   3:    8   12   10   7
   4:   16   24   20  14   9
   5:   32   48   40  28  18  11
   6:   64   96   80  56  36  22  13
   7:  128  192  160 112  72  44  26  15
   8:  256  384  320 224 144  88  52  30 17
   9:  512  768  640 448 288 176 104  60 34 19
  10: 1024 1536 1280 896 576 352 208 120 68 38 21
  ...
T(3, 2) = 2^1*(2*2+1) = 10. (End)
		

Crossrefs

The sequence is a permutation of A000027.
Main diagonal is A014480; inverse permutation is A209268.

Programs

  • Haskell
    a054582 n k = a054582_tabl !! n !! k
    a054582_row n = a054582_tabl !! n
    a054582_tabl = iterate
       (\xs@(x:_) -> (2 * x) : zipWith (+) xs (iterate (`div` 2) (2 * x))) [1]
    a054582_list = concat a054582_tabl
    -- Reinhard Zumkeller, Jan 22 2013
    
  • Mathematica
    (* Array: *)
    Grid[Table[2^m*(2*k + 1), {m, 0, 9}, {k, 0, 9}]] (* L. Edson Jeffery, Jun 05 2015 *)
    (* Array antidiagonals flattened: *)
    Flatten[Table[2^(m - k)*(2*k + 1), {m, 0, 9}, {k, 0, m}]] (* L. Edson Jeffery, Jun 05 2015 *)
  • PARI
    T(m,k)=(2*k+1)<Charles R Greathouse IV, Jun 21 2017

Formula

As a sequence, if n is a triangular number, then a(n)=a(n-A002024(n))+2, otherwise a(n)=2*a(n-A002024(n)-1).
a(n) = A075300(n-1)+1.
Recurrence for the sequence: if a(n-1)=2*k is even, then a(n)=k+A006519(2*k); if a(n-1)=2*k+1 is odd, then a(n)=2^(k+1), a(0)=1. - Philippe Deléham, Dec 13 2013
m = A(A001511(m)-1, A003602(m)-1), for each m in A000027. - L. Edson Jeffery, Nov 22 2015
The triangle is T(n, k) = A(n-k, k) = 2^(n-k)*(2*k+1), for n >= 0 and k = 0..n. - Wolfdieter Lang, Jan 30 2019

Extensions

Offset corrected by Reinhard Zumkeller, Jan 22 2013

A091072 Positive numbers k such that the Kronecker Symbol (-1 / k) > 0.

Original entry on oeis.org

1, 2, 4, 5, 8, 9, 10, 13, 16, 17, 18, 20, 21, 25, 26, 29, 32, 33, 34, 36, 37, 40, 41, 42, 45, 49, 50, 52, 53, 57, 58, 61, 64, 65, 66, 68, 69, 72, 73, 74, 77, 80, 81, 82, 84, 85, 89, 90, 93, 97, 98, 100, 101, 104, 105, 106, 109, 113, 114, 116, 117, 121, 122, 125, 128, 129
Offset: 1

Views

Author

Ralf Stephan, Feb 22 2004

Keywords

Comments

Numbers whose odd part is of the form 4k+1. The bit to the left of the least significant bit of each term is unset. Either of form 2a(m) or 4k+1, k >= 0, 0 < m < n.
A000265(a(n)) is an element of A016813.
a(n) such that A038189(a(n)) = 0.
Numbers n such that kronecker(n, m) = kronecker(m, n) for all m. - Michael Somos, Sep 24 2005
The Dragon curve A014577 (but changing the offset to 1): (1, 1, 0, 1, 1, 0, 0, 1, 1, 1, ...) = the characteristic function of A091072. - Gary W. Adamson, Apr 11 2010
Also indices of 1 in A034947. - Jianing Song, Apr 24 2021
The terms in the sequence are the same as the terms in the odd columns of the table in A135764 with headings 4k+1: (1, 5, 9, 13...). A014577(n) = 1 if n is in that set, but A014577(n) = 0 if n is in the set of even columns in the A135764 table. - Gary W. Adamson, May 29 2021
The asymptotic density of this sequence is 1/2. - Amiram Eldar, Sep 14 2024

Examples

			x + 2*x^2 + 4*x^3 + 5*x^4 + 8*x^5 + 9*x^6 + 10*x^7 + 13*x^8 + 16*x^9 + ...
		

Crossrefs

Complement of A091067.
Cf. A000265, A014577 (characteristic function), A014707, A016813, A034947, A055975, A106841 (first of triplet), A088742 (first differences), A339597.

Programs

  • Haskell
    import Data.List (elemIndices)
    a091072 n = a091072_list !! (n-1)
    a091072_list = map (+ 1) $ elemIndices 0 a014707_list
    -- Reinhard Zumkeller, Sep 28 2011
  • Maple
    KS := (n, k) -> NumberTheory:-KroneckerSymbol(n, k):
    aList := upto -> select(n -> 0 < KS(-1, n), [seq(1..upto)]):
    aList(129);  # Peter Luschny, Mar 20 2025
  • Mathematica
    Select[ Range[129], EvenQ[ (#/2^IntegerExponent[#, 2] - 1)/2 ] & ] (* Jean-François Alcover, Feb 16 2012, after Pari *)
  • PARI
    for(n=1,200,if(((n/2^valuation(n,2)-1)/2)%2==0,print1(n",")))
    
  • PARI
    {a(n) = local(m, c); if( n<1, 0, c=1; m=1; while( cMichael Somos, Sep 24 2005 */
    
  • PARI
    a(n) = if(n=2*n-2, my(t=1); forstep(i=logint(n,2),0,-1, if(bittest(n,i)==t, n--;t=!t))); n+1; \\ Kevin Ryde, Mar 21 2021
    
  • PARI
    isok(k) = kronecker(-1, k) > 0; \\ Michel Marcus, Mar 20 2025
    

Formula

A014707(a(n) + 1) = 0. - Reinhard Zumkeller, Sep 28 2011
A055975(a(n)) > 0. - Reinhard Zumkeller, Apr 28 2012

Extensions

New name from Peter Luschny, Mar 20 2025

A257503 Square array A(row,col) read by antidiagonals: A(1,col) = A256450(col-1), and for row > 1, A(row,col) = A255411(A(row-1,col)); Dispersion of factorial base shift A255411 (array transposed).

Original entry on oeis.org

1, 2, 4, 3, 12, 18, 5, 16, 72, 96, 6, 22, 90, 480, 600, 7, 48, 114, 576, 3600, 4320, 8, 52, 360, 696, 4200, 30240, 35280, 9, 60, 378, 2880, 4920, 34560, 282240, 322560, 10, 64, 432, 2976, 25200, 39600, 317520, 2903040, 3265920, 11, 66, 450, 3360, 25800, 241920, 357840, 3225600, 32659200, 36288000, 13, 70, 456, 3456, 28800, 246240, 2540160, 3588480, 35925120, 399168000, 439084800
Offset: 1

Views

Author

Antti Karttunen, Apr 27 2015

Keywords

Comments

The array is read by antidiagonals: A(1,1), A(1,2), A(2,1), A(1,3), A(2,2), A(3,1), etc.
The first row (A256450) contains all the numbers which have at least one 1-digit in their factorial base representation (see A007623), after which the successive rows are obtained from the terms on the row immediately above by shifting their factorial representation one left and then incrementing the nonzero digits in that representation with a factorial base shift-operation A255411.

Examples

			The top left corner of the array:
     1,     2,     3,     5,      6,      7,      8,      9,     10,     11,     13
     4,    12,    16,    22,     48,     52,     60,     64,     66,     70,     76
    18,    72,    90,   114,    360,    378,    432,    450,    456,    474,    498
    96,   480,   576,   696,   2880,   2976,   3360,   3456,   3480,   3576,   3696
   600,  3600,  4200,  4920,  25200,  25800,  28800,  29400,  29520,  30120,  30840
  4320, 30240, 34560, 39600, 241920, 246240, 272160, 276480, 277200, 281520, 286560
  ...
		

Crossrefs

Transpose: A257505.
Inverse permutation: A257504.
Row index: A257679, Column index: A257681.
Row 1: A256450, Row 2: A257692, Row 3: A257693.
Columns 1-3: A001563, A062119, A130744 (without their initial zero-terms).
Column 4: A213167 (without the initial one).
Column 5: A052571 (without initial zeros).
Cf. also permutations A255565 and A255566.
Thematically similar arrays: A083412, A135764, A246278.

Programs

Formula

A(1,col) = A256450(col-1), and for row > 1, A(row,col) = A255411(A(row-1,col)).

Extensions

Formula changed because of the changed starting offset of A256450 - Antti Karttunen, May 30 2016

A246675 Permutation of natural numbers: a(n) = A000079(A055396(n+1)-1) * ((2*A246277(n+1))-1).

Original entry on oeis.org

1, 2, 3, 4, 5, 8, 7, 6, 9, 16, 11, 32, 13, 10, 15, 64, 17, 128, 19, 18, 21, 256, 23, 12, 25, 14, 27, 512, 29, 1024, 31, 26, 33, 20, 35, 2048, 37, 42, 39, 4096, 41, 8192, 43, 22, 45, 16384, 47, 24, 49, 50, 51, 32768, 53, 36, 55, 66, 57, 65536, 59, 131072, 61, 38, 63, 52, 65, 262144, 67, 74, 69
Offset: 1

Views

Author

Antti Karttunen, Sep 01 2014

Keywords

Comments

Consider the square array A246278, and also A246275 which is obtained from the former when one is subtracted from each term.
In A246278 the even numbers occur at the top row, and all the rows below that contain only odd numbers, those subsequent terms in each column having been obtained by shifting all primes present in the prime factorization of number immediately above to one larger indices with A003961.
To compute a(n): we do the same process in reverse, by shifting primes in the prime factorization of n+1 step by step to smaller primes, until after k >= 0 such shifts with A064989, the result is even, with the smallest prime present being 2.
We subtract one from this even number and shift the binary expansion of the resulting odd number k positions left (i.e. multiply it with 2^k), which will be the result of a(n).
In the essence, a(n) tells which number in the array A135764 is at the same position where n is in the array A246275. As the topmost row in both arrays is A005408 (odd numbers), they are fixed, i.e., a(2n+1) = 2n+1 for all n.
A055396(n+1) tells on which row of A246275 n is, which is equal to the row of A246278 on which n+1 is.
A246277(n+1) tells in which column of A246275 n is, which is equal to the column of A246278 in which n+1 is.

Examples

			Consider 54 = 55-1. To find 55's position in array A246278, we start shifting its prime factorization 55 = 5 * 11 = p_3 * p_5, step by step: p_2 * p_4 (= 3 * 7 = 21), until we get an even number: p_1 * p_3 = 2*5 = 10.
This tells us that 55 is on row 3 and column 5 (= 10/2) of array A246278, thus 54 occurs in the same position at array A246275. In array A135764 the same position contains number (2^(3-1)) * (10-1) = 4*9 = 36, thus a(54) = 36.
		

Crossrefs

Inverse: A246676.
More recursed variants: A246677, A246683.
Even bisection halved: A246679.
Other related permutations: A054582, A135764, A246274, A246275, A246276.
a(n) differs from A156552(n+1) for the first time at n=13, where a(13) = 14, while A156552(14) = 17.

Programs

  • PARI
    A064989(n) = {my(f); f = factor(n); if((n>1 && f[1,1]==2), f[1,2] = 0); for (i=1, #f~, f[i,1] = precprime(f[i,1]-1)); factorback(f)};
    A246675(n) = { my(k=0); n++; while((n%2), n = A064989(n); k++); n--; while(k>0, n = 2*n; k--); n; };
    for(n=1, 2048, write("b246675.txt", n, " ", A246675(n)));
    
  • Scheme
    (define (A246675 n) (* (A000079 (- (A055396 (+ 1 n)) 1)) (-1+ (* 2 (A246277 (+ 1 n))))))

Formula

a(n) = A000079(A055396(n+1)-1) * ((2*A246277(n+1))-1).
As a composition of related permutations:
a(n) = A135764(A246276(n)).
a(n) = A054582(A246274(n)-1).
Other identities. For all n >= 0:
a(A005408(n)) = A005408(n). [Fixes the odd numbers.]

A328464 Square array A(n,k) = A276156((2^(n-1)) * (2k-1)) / A002110(n-1), read by descending antidiagonals.

Original entry on oeis.org

1, 3, 1, 7, 4, 1, 9, 16, 6, 1, 31, 19, 36, 8, 1, 33, 106, 41, 78, 12, 1, 37, 109, 386, 85, 144, 14, 1, 39, 121, 391, 1002, 155, 222, 18, 1, 211, 124, 421, 1009, 2432, 235, 324, 20, 1, 213, 1156, 426, 1079, 2443, 4200, 341, 438, 24, 1, 217, 1159, 5006, 1086, 2575, 4213, 7430, 457, 668, 30, 1, 219, 1171, 5011, 17018, 2586, 4421, 7447, 12674, 691, 900, 32, 1
Offset: 1

Views

Author

Antti Karttunen, Oct 16 2019

Keywords

Comments

Array is read by falling antidiagonals with n (row) and k (column) ranging as: (n,k) = (1,1), (1,2), (2,1), (1,3), (2,2), (3,1), ...
Row n contains all such sums of distinct primorials whose least significant summand is A002110(n-1), with each sum divided by that least significant primorial, which is also the largest primorial which divides that sum.

Examples

			Top left 9 X 11 corner of the array:
1: | 1,  3,   7,   9,    31,    33,    37,    39,    211,    213,    217
2: | 1,  4,  16,  19,   106,   109,   121,   124,   1156,   1159,   1171
3: | 1,  6,  36,  41,   386,   391,   421,   426,   5006,   5011,   5041
4: | 1,  8,  78,  85,  1002,  1009,  1079,  1086,  17018,  17025,  17095
5: | 1, 12, 144, 155,  2432,  2443,  2575,  2586,  46190,  46201,  46333
6: | 1, 14, 222, 235,  4200,  4213,  4421,  4434,  96578,  96591,  96799
7: | 1, 18, 324, 341,  7430,  7447,  7753,  7770, 215442, 215459, 215765
8: | 1, 20, 438, 457, 12674, 12693, 13111, 13130, 392864, 392883, 393301
9: | 1, 24, 668, 691, 20678, 20701, 21345, 21368, 765050, 765073, 765717
		

Crossrefs

Cf. A328463 (transpose).
Column 2: A008864.
Column 3: A023523 (after its initial term).
Column 4: A286624.
Cf. also arrays A276945, A286625.

Programs

  • PARI
    up_to = 105;
    A002110(n) = prod(i=1,n,prime(i));
    A276156(n) = { my(p=2,pr=1,s=0); while(n,if(n%2,s += pr); n >>= 1; pr *= p; p = nextprime(1+p)); (s); };
    A328464sq(n,k) = (A276156((2^(n-1)) * (k+k-1)) / A002110(n-1));
    A328464list(up_to) = { my(v = vector(up_to), i=0); for(a=1,oo, for(col=1,a, i++; if(i > up_to, return(v)); v[i] = A328464sq(col,(a-(col-1))))); (v); };
    v328464 = A328464list(up_to);
    A328464(n) = v328464[n];

Formula

A(n,k) = A276156((2^(n-1)) * (2k-1)) / A002110(n-1).
a(n) = A328461(A135764(n)). [When all sequences are considered as one-dimensional]

A246676 Permutation of natural numbers: a(n) = A242378(A007814(n), (1+A000265(n))) - 1.

Original entry on oeis.org

1, 2, 3, 4, 5, 8, 7, 6, 9, 14, 11, 24, 13, 26, 15, 10, 17, 20, 19, 34, 21, 44, 23, 48, 25, 32, 27, 124, 29, 80, 31, 12, 33, 74, 35, 54, 37, 62, 39, 76, 41, 38, 43, 174, 45, 134, 47, 120, 49, 50, 51, 64, 53, 98, 55, 342, 57, 104, 59, 624, 61, 242, 63, 16, 65, 56, 67, 244, 69, 224, 71, 90, 73, 68
Offset: 1

Views

Author

Antti Karttunen, Sep 01 2014

Keywords

Comments

To compute a(n) we shift its binary representation right as many steps k as necessary that the result were an odd number. Then one is added to that odd number, and the prime factorization of the resulting even number is shifted the same k number of steps towards larger primes, whose product is then decremented by one to get the final result.
In the essence, a(n) tells which number in array A246275 is at the same position where n is in the array A135764. As the topmost row in both arrays is A005408 (odd numbers), they are fixed, i.e. a(2n+1) = 2n+1 for all n.
Equally: a(n) tells which number in array A246273 is at the same position where n is in the array A054582, as they are the transposes of above two arrays.

Examples

			Consider n=36, "100100" in binary. It has to be shifted two bits right that the result were an odd number 9, "1001" in binary. We see that 9+1 = 10 = 2*5 = p_1 * p_3 [where p_k denotes the k-th prime, A000040(k)], and shifting this two steps towards larger primes results p_3 * p_5 = 5*11 = 55, thus a(36) = 55-1 = 54.
		

Crossrefs

Inverse: A246675.
Even bisection halved: A246680.
More recursed versions: A246678, A246684.
Other related permutations: A209268, A246273, A246275, A135764, A054582.

Programs

Formula

a(n) = A242378(A007814(n), (1+A000265(n))) - 1. [Where the bivariate function A242378(k,n) changes each prime p(i) in the prime factorization of n to p(i+k), i.e., it's the result of A003961 iterated k times starting from n].
As a composition of related permutations:
a(n) = A246273(A209268(n)).
Other identities:
For all n >= 0, a(A005408(n)) = A005408(n). [Fixes the odd numbers].

A249741 Sieve of Eratosthenes minus one: a(n) = A083221(n+1) - 1.

Original entry on oeis.org

1, 3, 2, 5, 8, 4, 7, 14, 24, 6, 9, 20, 34, 48, 10, 11, 26, 54, 76, 120, 12, 13, 32, 64, 90, 142, 168, 16, 15, 38, 84, 118, 186, 220, 288, 18, 17, 44, 94, 132, 208, 246, 322, 360, 22, 19, 50, 114, 160, 252, 298, 390, 436, 528, 28, 21, 56, 124, 202, 318, 376, 492, 550, 666, 840, 30, 23, 62, 144, 216, 340, 402, 526, 588, 712, 898, 960, 36, 25
Offset: 1

Views

Author

Antti Karttunen, Nov 15 2014

Keywords

Examples

			The top left corner of the array:
   1,   3,   5,    7,    9,   11,   13,   15,   17,   19,   21,   23,   25,
   2,   8,  14,   20,   26,   32,   38,   44,   50,   56,   62,   68,   74,
   4,  24,  34,   54,   64,   84,   94,  114,  124,  144,  154,  174,  184,
   6,  48,  76,   90,  118,  132,  160,  202,  216,  258,  286,  300,  328,
  10, 120, 142,  186,  208,  252,  318,  340,  406,  450,  472,  516,  582,
  12, 168, 220,  246,  298,  376,  402,  480,  532,  558,  610,  688,  766,
  16, 288, 322,  390,  492,  526,  628,  696,  730,  798,  900, 1002, 1036,
  18, 360, 436,  550,  588,  702,  778,  816,  892, 1006, 1120, 1158, 1272,
  22, 528, 666,  712,  850,  942,  988, 1080, 1218, 1356, 1402, 1540, 1632,
  28, 840, 898, 1072, 1188, 1246, 1362, 1536, 1710, 1768, 1942, 2058, 2116,
...
		

Crossrefs

Inverse: A249742.
Transpose: A114881.
Row 1: A005408, Column 1: A006093, Main diagonal: A249743.

Programs

Formula

a(n) = A083221(n+1) - 1.
As a composition of related permutations:
a(n) = A114881(A038722(n)).
a(n) = A249811(A135764(n)).

A135765 Distribute the odd numbers in columns based on the occurrence of "3" in each prime factorization; square array A(row, col) = 3^(row-1) * A007310(col), read by antidiagonals A(1,1), A(1,2), A(2,1), A(1,3), A(2,2), A(3,1), ...

Original entry on oeis.org

1, 5, 3, 7, 15, 9, 11, 21, 45, 27, 13, 33, 63, 135, 81, 17, 39, 99, 189, 405, 243, 19, 51, 117, 297, 567, 1215, 729, 23, 57, 153, 351, 891, 1701, 3645, 2187, 25, 69, 171, 459, 1053, 2673, 5103, 10935, 6561, 29, 75, 207, 513, 1377, 3159, 8019, 15309, 32805
Offset: 1

Views

Author

Alford Arnold, Nov 28 2007

Keywords

Comments

The Table can be constructed by multiplying sequence A000244 by A007310.
From Antti Karttunen, Jan 26 2015: (Start)
A permutation of odd numbers. Adding one to each term and then dividing by two gives a related table A254051, which for any odd number, located in this array as x = A(row,col), gives the result at A254051(row+1,col) after one combined Collatz step (3x+1)/2 -> x (A165355) has been applied.
Each odd number n occurs here in position A(A007949(n), A126760(n)).
Compare also to A135764.
(End)

Examples

			The top left corner of the array:
    1,    5,    7,   11,   13,   17,   19,   23,   25,   29,   31,   35, ...
    3,   15,   21,   33,   39,   51,   57,   69,   75,   87,   93,  105, ...
    9,   45,   63,   99,  117,  153,  171,  207,  225,  261,  279,  315, ...
   27,  135,  189,  297,  351,  459,  513,  621,  675,  783,  837,  945, ...
   81,  405,  567,  891, 1053, 1377, 1539, 1863, 2025, 2349, 2511, 2835, ...
  243, 1215, 1701, 2673, 3159, 4131, 4617, 5589, 6075, 7047, 7533, 8505, ...
etc.
For n = 6, we have [A002260(6), A004736(6)] = [3, 1] (that is 6 corresponds to location 3,1 (row,col) in above table) and A(3,1) = A000244(3-1) * A007310(1) = 3^2 * 1 = 9.
For n = 9, we have [A002260(9), A004736(9)] = [3, 2] (9 corresponds to location 3,2) and A(3,2) = A000244(3-1) * A007310(2) = 3^2 * 5 = 9*5 = 45.
For n = 13, we have [A002260(13), A004736(13)] = [3, 3] (13 corresponds to location 3,3) and A(3,3) = A000244(3-1) * A007310(3) = 3^2 * 7 = 9*7 = 63.
For n = 23, we have [A002260(23), A004736(23)] = [2, 6] (23 corresponds to location 2,6) and A(2,6) = A000244(2-1) * A007310(6) = 3^1 * 17 = 51.
		

Crossrefs

Row 1: A007310.
Column 1: A000244.
Cf. A007949 (row index), A126760 (column index).
Related arrays: A135764, A254051, A254055, A254101, A254102.

Programs

  • Maple
    N:= 20:
    B:= [seq(op([6*n+1,6*n+5]),n=0..floor((N-1)/2))]:
    [seq(seq(3^j*B[i-j],j=0..i-1),i=1..N)]; # Robert Israel, Jan 26 2015

Formula

From Antti Karttunen, Jan 26 2015: (Start)
With both row and col starting from 1:
A(row, col) = A000244(row-1) * A007310(col) = 3^(row-1) * A007310(col).
a(n) = (2*A254051(n))-1.
a(n) = A003961(A254053(n)).
Above in array form:
A(row,col) = A003961(A254053(row,col)) = A003961(A135764(row,A249745(col))).
(End)

Extensions

Name amended and examples edited by Antti Karttunen, Jan 26 2015
Showing 1-10 of 21 results. Next