cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 15 results. Next

A257681 Column index of A257503: If A257685(n) = 0, then a(n) = A257682(n), otherwise a(n) = a(A257685(n)).

Original entry on oeis.org

0, 1, 2, 3, 1, 4, 5, 6, 7, 8, 9, 10, 2, 11, 12, 13, 3, 14, 1, 15, 16, 17, 4, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 5, 43, 44, 45, 6, 46, 47, 48, 49, 50, 51, 52, 7, 53, 54, 55, 8, 56, 9, 57, 58, 59, 10, 60, 2
Offset: 0

Views

Author

Antti Karttunen, May 04 2015

Keywords

Comments

a(0) = 0 by convention, because 0 is not present in arrays A257503 and A257505.

Crossrefs

Column index of A257503, row index of A257505.
Cf. also A257679 (gives the other index).

Formula

If A257685(n) = 0, then a(n) = A257682(n), otherwise a(n) = a(A257685(n)).

A257504 Inverse permutation to A257503.

Original entry on oeis.org

1, 2, 4, 3, 7, 11, 16, 22, 29, 37, 46, 5, 56, 67, 79, 8, 92, 6, 106, 121, 137, 12, 154, 172, 191, 211, 232, 254, 277, 301, 326, 352, 379, 407, 436, 466, 497, 529, 562, 596, 631, 667, 704, 742, 781, 821, 862, 17, 904, 947, 991, 23, 1036, 1082, 1129, 1177, 1226, 1276, 1327, 30, 1379, 1432, 1486, 38, 1541, 47, 1597, 1654, 1712, 57, 1771, 9
Offset: 1

Views

Author

Antti Karttunen, May 06 2015

Keywords

Crossrefs

Inverse: A257503.

Programs

  • Scheme
    (define (A257504 n) (let ((col (A257681 n)) (row (A257679 n))) (* (/ 1 2) (- (expt (+ row col) 2) row col col col -2))))

Formula

a(n) = (1/2) * ((c+r)^2 - r - 3*c + 2), where c = A257681(n), and r = A257679(n).

A255411 Shift factorial base representation of n one digit left (with 0 added to right), increment all nonzero digits by one, then convert back to decimal; Numbers with no digit 1 in their factorial base representation.

Original entry on oeis.org

0, 4, 12, 16, 18, 22, 48, 52, 60, 64, 66, 70, 72, 76, 84, 88, 90, 94, 96, 100, 108, 112, 114, 118, 240, 244, 252, 256, 258, 262, 288, 292, 300, 304, 306, 310, 312, 316, 324, 328, 330, 334, 336, 340, 348, 352, 354, 358, 360, 364, 372, 376, 378, 382, 408, 412, 420, 424, 426, 430, 432, 436, 444
Offset: 0

Views

Author

Antti Karttunen, Apr 16 2015

Keywords

Comments

Nonnegative integers such that the number of ones (A257511) in their factorial base representation (A007623) is zero.
Nonnegative integers such that the least missing nonzero digit (A257079) in their factorial base representation is one.
a(n) can be also directly computed from n by "shifting left" its factorial base representation (that is, by appending one zero to the right, see A153880) and then incrementing all nonzero digits by one, and then converting the resulting (still valid) factorial base number back to decimal. See the examples.
The sequences A227130 and A227132 are closed under a(n), in other words, permutation listed as the a(n)-th entry in tables A060117 & A060118 has the same parity as the n-th entry in those same tables.

Examples

			Factorial base representation (A007623) of 1 is "1", shifting it left yields "10", and when we increment all nonzero digits by one, we get "20", which is the factorial base representation of 4 (as 4 = 2*2! + 0*1!), thus a(1) = 4.
F.b.r. of 2 is "10", shifting it left yields "100", and "200" is f.b.r. of 12, thus a(2) = 12.
F.b.r. of 43 is "1301", shifting it left and incrementing all nonzeros by one yields "24020", which is f.b.r of 340, thus a(43) = 340.
		

Crossrefs

Complement: A256450.
Positions of ones in A257079, fixed points of A257080, positions of zeros in A257511, A257081 and A257261.
Cf. also A227130/A227132, A060117/A060118 and also arrays A257503 & A257505.

Programs

  • Mathematica
    factBaseIntDs[n_] := Module[{m, i, len, dList, currDigit}, i = 1; While[n > i!, i++]; m = n; len = i; dList = Table[0, {len}]; Do[currDigit = 0; While[m >= j!, m = m - j!; currDigit++]; dList[[len - j + 1]] = currDigit, {j, i, 1, -1}]; If[dList[[1]] == 0, dList = Drop[dList, 1]]; dList]; s = Table[FromDigits[factBaseIntDs[n]], {n, 500}]; {0}~Join~Flatten@ Position[s, x_ /; DigitCount[x][[1]] == 0](* Michael De Vlieger, Apr 27 2015, after Alonso del Arte at A007623 *)
    Select[Range[0, 444], ! MemberQ[IntegerDigits[#, MixedRadix[Reverse@ Range@ 12]], 1] &] (* Michael De Vlieger, May 30 2016, Version 10.2 *)
    r = MixedRadix[Reverse@Range[2, 12]]; Table[FromDigits[Map[If[# == 0, 0, # + 1] &, IntegerDigits[n, r]]~Join~{0}, r], {n, 0, 60}] (* Michael De Vlieger, Aug 14 2016, Version 10.2 *)
  • Python
    from sympy import factorial as f
    def a007623(n, p=2): return n if n

    0 else '0' for i in x)[::-1] return 0 if n==0 else sum(int(y[i])*f(i + 1) for i in range(len(y))) print([a(n) for n in range(101)]) # Indranil Ghosh, Jun 20 2017

A256450 Numbers that have at least one 1-digit in their factorial base representation (A007623).

Original entry on oeis.org

1, 2, 3, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 17, 19, 20, 21, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 49, 50, 51, 53, 54, 55, 56, 57, 58, 59, 61, 62, 63, 65, 67, 68, 69, 71, 73, 74, 75, 77, 78, 79, 80, 81, 82, 83, 85, 86, 87, 89, 91, 92, 93, 95, 97, 98, 99, 101
Offset: 0

Views

Author

Antti Karttunen, Apr 27 2015

Keywords

Comments

Numbers n for which A257679(n) = 1, i.e., numbers n such that the least nonzero digit in their factorial base representation (A007623) is 1.
Involution A225901 maps each term of this sequence to a unique term of A273670, and vice versa.
Starting offset is zero (with a(0) = 1) because it is the most natural offset for the given fast recurrence.

Crossrefs

Complement of A255411.
Cf. A257680 (characteristic function), A273662 (left inverse).
First row of A257503, first column of A257505.
Subsequences: A059590 (apart from its zero-term), A255341, A255342, A255343, A257262, A257263, A258198, A258199.
Cf. also A227187 (numbers with at least one nonleading zero) and A273670, A225901.

Programs

  • Mathematica
    Select[Range@ 101, MemberQ[IntegerDigits[#, MixedRadix[Reverse@ Range@ 12]], 1] &] (* Michael De Vlieger, May 30 2016, Version 10.2 *)
    r = MixedRadix[Reverse@ Range[2, 12]]; Select[Range@ 101, Min[IntegerDigits[#, r] /. 0 -> Nothing] == 1 &]  (* Michael De Vlieger, Aug 14 2016, Version 10.2 *)
  • Python
    def A(n, p=2): return n if n

    =1]) # Indranil Ghosh, Jun 19 2017

Formula

a(0) = 1, and for n >= 1, if A257511(1+a(n-1)) > 0, then a(n) = a(n-1) + 1, otherwise a(n-1) + 2. [In particular, if the previous term is 2k, then the next term is 2k+1, because all odd numbers are members.]
Other identities:
For all n >= 0, A273662(a(n)) = n. [A273662 works as the left inverse for this sequence.]
From Antti Karttunen, May 26 2015: (Start)
Alternative recurrence for the same sequence:
Set k = A258198(n), d = n - A258199(n) and f = A000142(k+1) = (k+1)! If d < f then b(n) = f+d, otherwise b(n) = ((2+floor((d-f)/A258199(n))) * f) + b((d-f) mod A258199(n)). For offset=1 sequence, define a(n) = b(n-1).
(End)

Extensions

Starting offset changed from 1 to 0 by Antti Karttunen, May 30 2016

A062119 a(n) = n! * (n-1).

Original entry on oeis.org

0, 2, 12, 72, 480, 3600, 30240, 282240, 2903040, 32659200, 399168000, 5269017600, 74724249600, 1133317785600, 18307441152000, 313841848320000, 5690998849536000, 108840352997376000, 2189611807358976000, 46225138155356160000, 1021818843434188800000
Offset: 1

Views

Author

Olivier Gérard, Jun 13 2001

Keywords

Comments

For n > 0, a(n) = number of permutations of length n+1 that have 2 predetermined elements nonadjacent; e.g., for n=2, the permutations with, say, 1 and 2 nonadjacent are 132 and 231, therefore a(2)=2. - Jon Perry, Jun 08 2003
Number of multiplications performed when computing the determinant of an n X n matrix by definition. - Mats Granvik, Sep 12 2008
Sum of the length of all cycles (excluding fixed points) in all permutations of [n]. - Olivier Gérard, Oct 23 2012
Number of permutations of n distinct objects (ABC...) 1 (one) times >>("-", A, AB, ABC, ABCD, ABCDE, ..., ABCDEFGHIJK, infinity) and one after the other to resemble motif: A (1) AB (1-1), AAB (2-1), AAAB (3-1), AAAAB (4-1), AAAAAB (5-1), AAAAAAB (6-1), AAAAAAAB (7-1), AAAAAAAAB (8-1) etc.,>> "1(one) fixed point". Example:motif: AAAB (or BBBA) 12 * one (1) fixed point etc. Let: AAAB ................ 'A'BCD 1. 'A'BDC 2. 'A'CBD 3. ACDB 'A'DBC 4. 'A'DCB B'A'CD 5. B'A'DC 6. BCAD 7. BCDA BD'A'C 8. BDCA C'A'BD 9. C'A'DB CB'A'D 10. CBDA CDAB CDBA D'A'BC 11. DACB DB'A'C 12. DBCA DCAB DCBA. - Zerinvary Lajos, Nov 27 2009 (does anybody understand what this is supposed to say? - Joerg Arndt, Jan 10 2015)
a(n) is the number of ways to arrange n books on two bookshelves so that each shelf receives at least one book. - Geoffrey Critzer, Feb 21 2010
a(n) = number whose factorial base representation (A007623) begins with digit {n-1} and is followed by n-1 zeros. Viewed in that base, this sequence looks like this: 0, 10, 200, 3000, 40000, 500000, 6000000, 70000000, 800000000, 9000000000, A0000000000, B00000000000, ... (where "digits" A and B stand for placeholder values 10 and 11 respectively). - Antti Karttunen, May 07 2015

Crossrefs

Column 2 of A257503 (apart from initial zero. Equally, row 2 of A257505).
Cf. A001286 (same sequence divided by 2).
Cf. A001563. - Zerinvary Lajos, Aug 27 2008
Cf. sequences with formula (n + k)*n! listed in A282466.

Programs

Formula

a(n) = n! * (n-1).
E.g.f.: x^2/(1-x)^2. - Geoffrey Critzer, Feb 21 2010
a(n) = 2 * A001286(n).
a(n) = A001563(n) - A000142(n). - Antti Karttunen, May 07 2015, hinted by crossref left by Lajos.
From Amiram Eldar, Jul 11 2020: (Start)
Sum_{n>=2} 1/a(n) = Ei(1) + 2 - e - gamma = A091725 + 2 - A001113 - A001620.
Sum_{n>=2} (-1)^n/a(n) = gamma - Ei(-1) - 1/e = A001620 + A099285 - A068985. (End)

Extensions

Last term a(19) corrected by Harry J. Smith, Aug 02 2009

A257679 The smallest nonzero digit present in the factorial base representation (A007623) of n, 0 if no nonzero digits present.

Original entry on oeis.org

0, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 3, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 1, 1, 2, 1, 3, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 3, 1, 1, 1, 2, 1, 4, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 3, 1, 1, 1, 2, 1, 1
Offset: 0

Views

Author

Antti Karttunen, May 04 2015

Keywords

Comments

a(0) = 0 by convention, because "0" has no nonzero digits present.
a(n) gives the row index of n in array A257503 (equally, the column index for array A257505).

Examples

			Factorial base representation (A007623) of 4 is "20", the smallest digit which is not zero is "2", thus a(4) = 2.
		

Crossrefs

Positions of records: A001563.
Cf. A256450, A257692, A257693 (positions of 1's, 2's and 3's in this sequence).
Cf. also A257079, A246359 and arrays A257503, A257505.

Programs

  • Mathematica
    a[n_] := Module[{k = n, m = 2, rmin = n, r}, While[{k, r} = QuotientRemainder[k, m]; k != 0 || r != 0, If[0 < r < rmin, rmin = r]; m++]; rmin]; Array[a, 100, 0] (* Amiram Eldar, Jan 23 2024 *)
  • Python
    def A(n, p=2):
        return n if n
  • Scheme
    (define (A257679 n) (let loop ((n n) (i 2) (mind 0)) (if (zero? n) mind (let ((d (modulo n i))) (loop (/ (- n d) i) (+ 1 i) (cond ((zero? mind) d) ((zero? d) mind) (else (min d mind))))))))
    ;; Alternative implementations based on given recurrences, using memoizing definec-macro:
    (definec (A257679 n) (if (zero? (A257687 n)) (A099563 n) (min (A099563 n) (A257679 (A257687 n)))))
    (definec (A257679 n) (cond ((zero? n) n) ((= 1 (A257680 n)) 1) (else (+ 1 (A257679 (A257684 n))))))
    

Formula

If A257687(n) = 0, then a(n) = A099563(n), otherwise a(n) = min(A099563(n), a(A257687(n))).
In other words, if n is either zero or one of the terms of A051683, then a(n) = A099563(n) [the most significant digit of its f.b.r.], otherwise take the minimum of the most significant digit and a(A257687(n)) [value computed by recursing with a smaller value obtained by discarding that most significant digit].
a(0) = 0, and for n >= 1: if A257680(n) = 1, then a(n) = 1, otherwise 1 + a(A257684(n)).
Other identities:
For all n >= 0, a(A001563(n)) = n. [n * n! gives the first position where n appears. Note also that the "digits" (placeholders) in factorial base representation may get arbitrarily large values.]
For all n >= 0, a(2n+1) = 1 [because all odd numbers end with digit 1 in factorial base].

A257505 Square array A(row,col): A(row,1) = A256450(row-1), and for col > 1, A(row,col) = A255411(A(row,col-1)); Dispersion of factorial base shift A255411.

Original entry on oeis.org

1, 4, 2, 18, 12, 3, 96, 72, 16, 5, 600, 480, 90, 22, 6, 4320, 3600, 576, 114, 48, 7, 35280, 30240, 4200, 696, 360, 52, 8, 322560, 282240, 34560, 4920, 2880, 378, 60, 9, 3265920, 2903040, 317520, 39600, 25200, 2976, 432, 64, 10, 36288000, 32659200, 3225600, 357840, 241920, 25800, 3360, 450, 66, 11, 439084800, 399168000, 35925120, 3588480, 2540160, 246240, 28800, 3456, 456, 70, 13
Offset: 1

Views

Author

Antti Karttunen, Apr 27 2015

Keywords

Comments

The array is read by downward antidiagonals: A(1,1), A(1,2), A(2,1), A(1,3), A(2,2), A(3,1), etc.
In Kimberling's terminology, this array is called the dispersion of sequence A255411 (when started from its first nonzero term, 4). The left column is the complement of that sequence, which is A256450.

Examples

			The top left corner of the array:
   1,   4,  18,   96,   600,   4320,   35280,   322560,   3265920
   2,  12,  72,  480,  3600,  30240,  282240,  2903040,  32659200
   3,  16,  90,  576,  4200,  34560,  317520,  3225600,  35925120
   5,  22, 114,  696,  4920,  39600,  357840,  3588480,  39553920
   6,  48, 360, 2880, 25200, 241920, 2540160, 29030400, 359251200
   7,  52, 378, 2976, 25800, 246240, 2575440, 29352960, 362517120
   8,  60, 432, 3360, 28800, 272160, 2822400, 31933440, 391910400
   9,  64, 450, 3456, 29400, 276480, 2857680, 32256000, 395176320
  10,  66, 456, 3480, 29520, 277200, 2862720, 32296320, 395539200
  11,  70, 474, 3576, 30120, 281520, 2898000, 32618880, 398805120
  13,  76, 498, 3696, 30840, 286560, 2938320, 32981760, 402433920
  14,  84, 552, 4080, 33840, 312480, 3185280, 35562240, 431827200
  15,  88, 570, 4176, 34440, 316800, 3220560, 35884800, 435093120
  17,  94, 594, 4296, 35160, 321840, 3260880, 36247680, 438721920
  19, 100, 618, 4416, 35880, 326880, 3301200, 36610560, 442350720
  20, 108, 672, 4800, 38880, 352800, 3548160, 39191040, 471744000
  21, 112, 690, 4896, 39480, 357120, 3583440, 39513600, 475009920
  23, 118, 714, 5016, 40200, 362160, 3623760, 39876480, 478638720
  ...
		

Crossrefs

Transpose: A257503.
Inverse permutation: A257506.
Row index: A257681, Column index: A257679.
Columns 1-3: A256450, A257692, A257693.
Rows 1-3: A001563, A062119, A130744 (without their initial zero-terms).
Row 4: A213167 (without the initial one).
Row 5: A052571 (without initial zeros).
Cf. also permutations A255565, A255566.
Thematically similar arrays: A035513, A054582, A246279.

Programs

Formula

A(row,1) = A256450(row-1), and for col > 1, A(row,col) = A255411(A(row,col-1)).

Extensions

Formula changed because of the changed starting offset of A256450 - Antti Karttunen, May 30 2016

A276953 Square array A(row,col) read by antidiagonals: A(1,col) = A273670(col-1), and for row > 1, A(row,col) = A153880(A(row-1,col)); Dispersion of factorial base shift A153880 (array transposed).

Original entry on oeis.org

1, 3, 2, 4, 8, 6, 5, 12, 30, 24, 7, 14, 48, 144, 120, 9, 26, 54, 240, 840, 720, 10, 32, 126, 264, 1440, 5760, 5040, 11, 36, 150, 744, 1560, 10080, 45360, 40320, 13, 38, 168, 864, 5160, 10800, 80640, 403200, 362880, 15, 50, 174, 960, 5880, 41040, 85680, 725760, 3991680, 3628800, 16, 56, 246, 984, 6480, 46080, 367920, 766080, 7257600, 43545600, 39916800
Offset: 1

Views

Author

Antti Karttunen, Sep 22 2016

Keywords

Comments

The array A(row,col) is read by descending antidiagonals: A(1,1), A(1,2), A(2,1), A(1,3), A(2,2), A(3,1), etc.
Entries on row n are all multiples of n!. Dividing that factor out gives another array A276616.

Examples

			The top left corner of the array:
    1,    3,     4,     5,     7,     9,    10,    11,    13,    15,    16
    2,    8,    12,    14,    26,    32,    36,    38,    50,    56,    60
    6,   30,    48,    54,   126,   150,   168,   174,   246,   270,   288
   24,  144,   240,   264,   744,   864,   960,   984,  1464,  1584,  1680
  120,  840,  1440,  1560,  5160,  5880,  6480,  6600, 10200, 10920, 11520
  720, 5760, 10080, 10800, 41040, 46080, 50400, 51120, 81360, 86400, 90720
		

Crossrefs

Inverse permutation: A276954.
Transpose: A276955.
Cf. A276949 (index of row where n appears), A276951 (index of column).
Row 1: A273670, Row 2: A276932, Row 3: A276933.
Column 1: A000142. For other columns, see the rows of transposed array A276955.
Related or similar permutations: A257503, A275848, A273666.
Cf. also arrays A276616, A276589 & A276943.

Programs

Formula

A(1,col) = A273670(col-1), and for row > 1, A(row,col) = A153880(A(row-1,col))
As a composition of other permutations:
a(n) = A275848(A257503(n)).
Other identities. For all n >= 1:
A(A276949(n),A276951(n)) = n.

A052571 E.g.f. x^3/(1-x)^2.

Original entry on oeis.org

0, 0, 0, 6, 48, 360, 2880, 25200, 241920, 2540160, 29030400, 359251200, 4790016000, 68497228800, 1046139494400, 16999766784000, 292919058432000, 5335311421440000, 102437979291648000, 2067966706950144000
Offset: 0

Views

Author

encyclopedia(AT)pommard.inria.fr, Jan 25 2000

Keywords

Comments

For n >= 3, a(n) = number whose factorial base representation (A007623) begins with digit {n-2} followed by n-1 zeros. Viewed in that base, this sequence looks like this: 0, 0, 0, 100, 2000, 30000, 400000, 5000000, 60000000, 700000000, 8000000000, 90000000000, A00000000000, B000000000000, ... (where "digits" A and B stand for placeholder values 10 and 11 respectively). - Antti Karttunen, May 07 2015

Crossrefs

Column 5 of A257503 (apart from zero terms. Equally, row 5 of A257505).
Cf. sequences with formula (n + k)*n! listed in A282466.

Programs

  • Magma
    [0,0] cat [n*(n+1)*(n+2)*Factorial(n): n in [0..20]]; // Vincenzo Librandi, Oct 11 2011
    
  • Maple
    spec := [S,{S=Prod(Z,Z,Z,Sequence(Z),Sequence(Z))},labeled]: seq(combstruct[count](spec,size=n), n=0..20);
    [seq (n*(n+1)*(n+2)*n!,n=0..17)]; # Zerinvary Lajos, Nov 25 2006
    a:=n->add((n!),j=1..n-2):seq(a(n), n=0..21); # Zerinvary Lajos, Aug 27 2008
    G(x):=x^3/(1-x)^2: f[0]:=G(x): for n from 1 to 21 do f[n]:=diff(f[n-1],x) od: x:=0: seq(f[n],n=0..19); # Zerinvary Lajos, Apr 01 2009
  • Mathematica
    Table[Sum[n!, {i, 3, n}], {n, 0, 19}] (* Zerinvary Lajos, Jul 12 2009 *)
    With[{nn=20},CoefficientList[Series[x^3/(1-x)^2,{x,0,nn}],x] Range[0,nn]!] (* Harvey P. Dale, Feb 27 2025 *)
  • Scheme
    (define (A052571 n) (if (< n 2) 0 (* (- n 2) (A000142 n)))) ;; Antti Karttunen, May 07 2015

Formula

E.g.f.: x^3/(-1+x)^2.
Recurrence: {a(1)=0, a(0)=0, a(2)=0, a(3)=6, (1-n^2)*a(n)+(-2+n)*a(n+1)=0}.
For n >= 2, a(n) = (n-2)*n!.
a(n+2) = n*(n+1)*(n+2)*n!. - Zerinvary Lajos, Nov 25 2006
a(n) = 3*A090672(n-2) = 6*A005990(n-2). - Zerinvary Lajos, May 11 2007
From Amiram Eldar, Jan 14 2021: (Start)
Sum_{n>=3} 1/a(n) = 9/4 - e - gamma/2 + Ei(1)/2 = 9/4 - A001113 - (1/2)*A001620 + (1/2)*A091725.
Sum_{n>=3} (-1)^(n+1)/a(n) = -1/4 + gamma/2 - Ei(-1)/2 = -1/4 + (1/2)*A001620 + (1/2)*A099285. (End)

A255566 a(0) = 0; after which, a(2n) = A255411(a(n)), a(2n+1) = A256450(a(n)).

Original entry on oeis.org

0, 1, 4, 2, 18, 6, 12, 3, 96, 24, 48, 8, 72, 15, 16, 5, 600, 120, 240, 30, 360, 56, 60, 10, 480, 87, 88, 20, 90, 21, 22, 7, 4320, 720, 1440, 144, 2160, 270, 288, 36, 2880, 416, 420, 67, 432, 73, 66, 13, 3600, 567, 568, 107, 570, 109, 108, 26, 576, 111, 112, 27, 114, 28, 52, 9, 35280, 5040, 10080, 840, 15120, 1584, 1680, 168
Offset: 0

Views

Author

Antti Karttunen, May 05 2015

Keywords

Comments

This sequence can be represented as a binary tree. Each left hand child is produced as A255411(n), and each right hand child as A256450(n), when parent contains n >= 1:
0
|
...................1...................
4 2
18......../ \........6 12......../ \........3
/ \ / \ / \ / \
/ \ / \ / \ / \
/ \ / \ / \ / \
96 24 48 8 72 15 16 5
600 120 240 30 360 56 60 10 480 87 88 20 90 21 22 7
etc.
Because all terms of A255411 are even it means that odd terms can occur only in odd positions (together with some even terms, for each one of which there is a separate infinite cycle), while terms in even positions are all even.
After its initial 1, A255567 seems to give all the terms like 2, 3, 12, ... where the left hand child of the right hand child is one more than the right hand child of the left hand child (as for 2: 16 = 15+1, as for 3: 22 = 21+1, as for 12: 88 = 87+1).

Crossrefs

Inverse: A255565.
Cf. also A255567 and arrays A257503, A257505.
Related or similar permutations: A273666, A273667.

Formula

a(0) = 0; after which, a(2n) = A255411(a(n)), a(2n+1) = A256450(a(n)).
Other identities:
For all n >= 0, a(2^n) = A001563(n+1). [The leftmost branch of the binary tree is given by n*n!]
For all n >= 0, a(A083318(n)) = A000142(n+1). [And the next innermost vertices by (n+1)! This follows because A256450(n*n! - 1) = (n+1)! - 1.]
For all n >= 1, A257679(a(n)) = A001511(n).

Extensions

Formula changed because of the changed starting offset of A256450 - Antti Karttunen, May 30 2016
Showing 1-10 of 15 results. Next