cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: Mariel Supina

Mariel Supina's wiki page.

Mariel Supina has authored 1 sequences.

A307389 a(n) is the number of elements in the species of orbit polytopes in dimension n.

Original entry on oeis.org

1, 1, 2, 7, 29, 136, 737, 4537, 30914, 229831, 1850717, 16036912, 148573889, 1463520241, 15259826402, 167789512807, 1939125333629, 23484982837816, 297289975208417, 3924325664733097, 53906145745657634, 769095929901073831, 11377500925452103037, 174244037885068510432
Offset: 0

Author

Mariel Supina, Apr 17 2019

Keywords

Comments

An orbit polytope is a polytope whose vertices are all of the permutations of the coordinates of some point in R^n. Two polytopes are normally equivalent if they have the same normal fan. The species of orbit polytopes maps a finite set I to the set OP[I] of normal equivalence classes of finite products of orbit polytopes in RI. For each n, this sequence counts the size of OP[I] when |I|=n.

Examples

			For n=3, there are 7 normal equivalence classes. Among these are the 4 normal equivalence classes of orbit polytopes in R^3: the permutohedron conv{123,132,213,231,321,312}, the standard simplex conv{100,010,001}, the simplex conv{110,101,011}, and a point. In addition, there are 3 normal equivalence classes of products of two orbit polytopes, which are the line segments conv{001,010}, conv{001,100}, and conv{010,100}.
		

Crossrefs

Cf. A376544.

Programs

  • Magma
    m:=30; R:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!( Exp((Exp(2*x) -2*Exp(x) +2*x +1)/2) )); [Factorial(n-1)*b[n]: n in [1..m]]; // G. C. Greubel, Jul 14 2019
    
  • Maple
    b:= proc(n, p) option remember; `if`(n=0, 1/p!, add(
          b(n-j, 0)*binomial(n-1, j-1)/p!, j=2..n)+b(n-1, p+1)*n)
        end:
    a:= n-> b(n, 0):
    seq(a(n), n=0..23);  # Alois P. Heinz, Dec 01 2024
  • Mathematica
    nmax = 30; CoefficientList[Series[E^((E^(2*x) - 2*E^x + 2*x + 1)/2), {x, 0, nmax}], x] * Range[0, nmax]! (* Vaclav Kotesovec, May 18 2019 *)
  • PARI
    my(t='t+O('t^30)); Vec(serlaplace(exp((exp(2*t)-2*exp(t)+2*t+1 )/2))) \\ Michel Marcus, Apr 24 2019
    
  • PARI
    upto(n) = my(v1, v2, v3); v1 = vector(2*n + 1, i, 1); v2 = v1; v3 = vector(n + 1, i, 0); v3[1] = 1; for(i = 1, n, for(q = 0, 2*(n - i), v2[q + 1] = (q + 1) * v1[q + 1] - v1[q + 2] + v1[q + 3]); v1 = v2; v3[i + 1] = v1[1]); v3 \\ Mikhail Kurkov, Jan 04 2024 [verification needed]
    
  • Sage
    m = 30; T = taylor(exp((exp(2*x) -2*exp(x) +2*x +1)/2), x, 0, m); [factorial(n)*T.coefficient(x, n) for n in (0..m)] # G. C. Greubel, Jul 14 2019

Formula

E.g.f.: exp((exp(2*t) - 2*exp(t) + 2*t + 1)/2). This is because OP is the exponential of the species of compositions mapping a finite set I to the set of compositions of the integer |I|, excluding compositions with one part if |I|>1.
a(n) = R(n, 0) for n >= 0 where R(n, q) = (q+1)*R(n-1, q) - R(n-1, q+1) + R(n-1, q+2) for n > 0, q >= 0 with R(0, q) = 1 for q >= 0. - Mikhail Kurkov, Jan 04 2024 [verification needed]

Extensions

More terms from Michel Marcus, Apr 26 2019