cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: Eli Jaffe

Eli Jaffe's wiki page.

Eli Jaffe has authored 4 sequences.

A370202 a(n) = a(n-3) + a(n-2) + gcd(a(n-2), a(n-1)) with a(1) = a(2) = a(3) = 1.

Original entry on oeis.org

1, 1, 1, 3, 3, 7, 7, 17, 15, 25, 37, 41, 63, 79, 105, 143, 185, 249, 329, 435, 579, 767, 1015, 1347, 1783, 2363, 3131, 4147, 5495, 7279, 9643, 12775, 16923, 22419, 29701, 39343, 52121, 69045, 91465, 121171, 160511, 212637, 281683, 373149, 494321, 654833, 867471
Offset: 1

Author

Eli Jaffe, Feb 11 2024

Keywords

Comments

The ratio between consecutive terms (a(n)/a(n-1)) appears to approach the plastic constant A060006.

Crossrefs

Programs

  • Python
    from math import gcd
    def terms(n):
      nums = [1,1,1]
      for i in range(n-3):
        new_num = nums[i] + nums[i+1] + gcd(nums[i+1], nums[i+2])
        nums.append(new_num)
      return nums

A271310 Decimal expansion of the leftmost root of Im(W(z)/log(z)) = Re(W(z)/log(z)) (negated), where W(z) denotes the Lambert W function.

Original entry on oeis.org

4, 2, 1, 3, 1, 5, 0, 6, 8, 4, 8, 4, 4, 9, 0, 4, 8, 9, 8, 4, 6, 0, 6, 8, 9, 1, 9, 6, 4, 5, 6, 0, 1, 5, 8, 3, 9, 7, 4, 9, 4, 4, 4, 9, 0, 1, 7, 6, 6, 0, 8, 0, 2, 3, 2, 4, 7, 0, 4, 2, 2, 7, 4, 9, 6, 8, 9, 2, 0, 2, 4, 2, 1, 3, 2, 5, 2, 1, 7, 4, 3, 3, 9, 2, 3, 3, 9, 4, 4, 3, 6, 1, 8, 0, 0, 0, 9, 8, 2, 4, 0, 4, 8, 1, 7
Offset: 0

Author

Eli Jaffe, Mar 27 2016

Keywords

Examples

			-0.42131506848449048984606891964560158397494449...
		

Programs

  • Maple
    f:= z-> Re(LambertW(-z)/ln(-z))-Im(LambertW(-z)/ln(-z)):
    Digits:= 200:
    fsolve(f(x), x=0.4..1.0);  # Alois P. Heinz, May 04 2016
  • Mathematica
    FindRoot[Im[ProductLog[z]/Log[z]] - Re[ProductLog[z]/Log[z]] == 0, {z, -0.42241, -0.416207}, WorkingPrecision ->100 ]

A263727 Largest square number less than or equal to the n-th Fibonacci number.

Original entry on oeis.org

0, 1, 1, 1, 1, 4, 4, 9, 16, 25, 49, 81, 144, 225, 361, 576, 961, 1521, 2500, 4096, 6724, 10816, 17689, 28561, 46225, 74529, 121104, 196249, 316969, 514089, 831744, 1345600, 2175625, 3523129, 5702544, 9223369, 14922769, 24157225, 39087504, 63234304, 102333456
Offset: 0

Author

Eli Jaffe, Oct 24 2015

Keywords

Examples

			For a(8), Fibonacci(8) = 21, the largest square under 21 is 16, so a(8) = 16.
		

Crossrefs

Programs

  • Mathematica
    Floor[Sqrt[Fibonacci[Range[40]]]]^2 (* Alonso del Arte, Oct 24 2015 *)
  • PARI
    a(n) = sqrtint(fibonacci(n))^2; \\ Michel Marcus, Oct 25 2015

Formula

a(n) = floor(sqrt(Fibonacci(n)))^2.
a(n) = A061287(n)^2. - Michel Marcus, Oct 25 2015
a(n) = A048760(A000045(n)). - Michel Marcus, Nov 11 2015

A263651 Numbers n such that the difference between n and the largest square less than n is a nonzero square.

Original entry on oeis.org

2, 5, 8, 10, 13, 17, 20, 26, 29, 34, 37, 40, 45, 50, 53, 58, 65, 68, 73, 80, 82, 85, 90, 97, 101, 104, 109, 116, 122, 125, 130, 137, 145, 148, 153, 160, 170, 173, 178, 185, 194, 197, 200, 205, 212, 221, 226, 229, 234, 241, 250, 257, 260, 265, 272, 281, 290, 293, 298, 305
Offset: 1

Author

Eli Jaffe, Oct 22 2015

Keywords

Comments

Numbers n such that A053186(n) is a positive square. - Michel Marcus, Oct 23 2015
Numbers of the form a^2 + b^2 where a >= 1 and 1 <= b^2 <= 2a. - Robert Israel, Oct 23 2015
Numbers n such that A053610(n) = 2. - Thomas Ordowski, May 22 2016

Examples

			For n=5, the largest square less than 5 is 4, and the difference between 4 and 5 is 1, which is also square.
		

Crossrefs

Cf. A053186.

Programs

  • Maple
    N:= 1000: # to get all terms <= N
    sort([seq(seq(a^2 + b^2, b=1..min(floor(sqrt(2*a)),floor(sqrt(N-a^2)))),a=1..floor(sqrt(N-1)))]); # Robert Israel, Oct 23 2015
  • Mathematica
    Select[Range@ 305, And[IntegerQ@ Sqrt[# - Floor[Sqrt@ #]^2], ! IntegerQ@ Sqrt@ #] &] (* Michael De Vlieger, Oct 23 2015 *)
  • PARI
    isok(n) = (d = (n - sqrtint(n)^2)) && issquare(d); \\ Michel Marcus, Oct 23 2015

Extensions

More terms from Michel Marcus, Oct 23 2015