A182110 Irregular triangle read by rows: generating function counting rotationally distinct n X n tatami tilings with n monomers and exactly k vertical dimers.
1, 1, 2, 1, 2, 3, 2, 1, 2, 3, 6, 4, 2, 2, 1, 2, 3, 6, 9, 8, 7, 6, 2, 2, 2, 1, 2, 3, 6, 9, 14, 15, 14, 14, 10, 8, 6, 4, 2, 2, 2, 1, 2, 3, 6, 9, 14, 22, 24, 25, 28, 25, 22, 19, 14, 10, 10, 8, 4, 4, 2, 2, 2, 1, 2, 3, 6, 9, 14, 22, 32, 37, 42, 49, 48, 49, 46, 38, 34, 30, 24, 20, 16, 12, 12, 10, 6, 4, 4, 2, 2, 2
Offset: 0
Examples
T_5(z) = 1 + 2*z + 3*z^2 + 6*z^3 + 4*z^4 + 2*z^5 + 2*z^6; T(5,2) = 3, and the tilings are as follows: ._ _ _ _ _. |_|_ _| |_| |_ _| |_| | |_| |_| |_| | |_| |_| | |_|_|_|_|_| . ._ _ _ _ _. |_| |_ _|_| | |_| |_ _| |_| |_| |_| | |_| |_| | |_|_|_|_|_| . ._ _ _ _ _. |_| |_| |_| | |_| |_| | |_| |_| |_| |_|_| |_|_| |_ _|_|_ _| The triangle begins: 1 1,2 1,2,3,2 1,2,3,6,4,2,2 1,2,3,6,9,8,7,6,2,2,2 1,2,3,6,9,14,15,14,14,10,8,6,4,2,2,2 1,2,3,6,9,14,22,24,25,28,25,22,19,14,10,10,8,4,4,2,2,2 1,2,3,6,9,14,22,32,37,42,49,48,49,46,38,34,30,24,20,16,12,12,10,6,4,4,2,2,2 1,2,3,6,9,14,22,32,46,56,66,78,84,90,92,88,81,76,69,58,51,44,38,34,28,22,20,16,14,12,8,6,4,4,2,2,2 ...
Links
- Alejandro Erickson, Table of n, a(n) for n = 0..9999
- Alejandro Erickson, Table of coefficients of T_n(z)
- Alejandro Erickson, Frank Ruskey, Enumerating maximal tatami mat coverings of square grids with v vertical dominoes, arXiv:1304.0070 [math.CO], 2013.
Crossrefs
Programs
-
Sage
@cached_function def S(n,z): out = 1 for i in [j+1 for j in range(n)]: out = out*(1+z^i) return out T = lambda n,z: 2*sum([S(n-i-2,z)*S(i-1,z)*z^(n-i-1) for i in range(1,floor((n-1)/2)+1)]) + S(floor((n-2)/2),z)^2 ZP.
= PolynomialRing(ZZ) #call T(n,x) for the g.f. T_n(x)
Formula
G.f.: T_n(z) = Sum_{k>=0} T(n,k)*z^k is equal to
T_n(z) = 2*Sum_{i=1..floor((n-1)/2)} S_{n-i-2}(z)*S_{i-1}(z)*z^{n-i-1} + (S_{floor((n-2)/2))^2, where S_k(z) = Product_{i=1..k} (1+z^i). Note that deg(T_n(z)) = binomial(n-1,2).
Extensions
Entry revised by N. J. A. Sloane, Jun 06 2013
Comments