cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: Alejandro Erickson

Alejandro Erickson's wiki page.

Alejandro Erickson has authored 2 sequences.

A182110 Irregular triangle read by rows: generating function counting rotationally distinct n X n tatami tilings with n monomers and exactly k vertical dimers.

Original entry on oeis.org

1, 1, 2, 1, 2, 3, 2, 1, 2, 3, 6, 4, 2, 2, 1, 2, 3, 6, 9, 8, 7, 6, 2, 2, 2, 1, 2, 3, 6, 9, 14, 15, 14, 14, 10, 8, 6, 4, 2, 2, 2, 1, 2, 3, 6, 9, 14, 22, 24, 25, 28, 25, 22, 19, 14, 10, 10, 8, 4, 4, 2, 2, 2, 1, 2, 3, 6, 9, 14, 22, 32, 37, 42, 49, 48, 49, 46, 38, 34, 30, 24, 20, 16, 12, 12, 10, 6, 4, 4, 2, 2, 2
Offset: 0

Author

Alejandro Erickson, Apr 12 2012

Keywords

Comments

Monomer-dimer tatami tilings are arrangements of 1 X 1 monomers, 2 X 1 vertical dimers and 1 X 2 horizontal dimers on subsets of the integer grid, with the property that no four tiles meet at any point. a(n) applies to tilings of this type which have monomers in their top corners.
a(n) is the table T(2,0); T(3,0), T(3,1); T(4,0), T(4,1), T(4,2), T(4,3); T(5,0), T(5,1) ... where T(n,k) is the number of n X n tilings of the type described above with exactly k vertical dimers when n is even and exactly k horizontal dimers when n is odd.

Examples

			T_5(z) = 1 + 2*z + 3*z^2 + 6*z^3 + 4*z^4 + 2*z^5 + 2*z^6;
T(5,2) = 3, and the tilings are as follows:
._ _ _ _ _.
|_|_ _| |_|
|_ _| |_| |
|_| |_| |_|
| |_| |_| |
|_|_|_|_|_|
.
._ _ _ _ _.
|_| |_ _|_|
| |_| |_ _|
|_| |_| |_|
| |_| |_| |
|_|_|_|_|_|
.
._ _ _ _ _.
|_| |_| |_|
| |_| |_| |
|_| |_| |_|
|_|_| |_|_|
|_ _|_|_ _|
The triangle begins:
1
1,2
1,2,3,2
1,2,3,6,4,2,2
1,2,3,6,9,8,7,6,2,2,2
1,2,3,6,9,14,15,14,14,10,8,6,4,2,2,2
1,2,3,6,9,14,22,24,25,28,25,22,19,14,10,10,8,4,4,2,2,2
1,2,3,6,9,14,22,32,37,42,49,48,49,46,38,34,30,24,20,16,12,12,10,6,4,4,2,2,2
1,2,3,6,9,14,22,32,46,56,66,78,84,90,92,88,81,76,69,58,51,44,38,34,28,22,20,16,14,12,8,6,4,4,2,2,2
...
		

Crossrefs

S_k(z) is entry A053632.
T_n(z) is a partition of A001787(n)/4.
Tatami tilings with the same number of vertical and horizontal dimers is A182107.

Programs

  • Sage
    @cached_function
    def S(n,z):
        out = 1
        for i in [j+1 for j in range(n)]:
            out = out*(1+z^i)
        return out
    T = lambda n,z: 2*sum([S(n-i-2,z)*S(i-1,z)*z^(n-i-1) for i in range(1,floor((n-1)/2)+1)]) + S(floor((n-2)/2),z)^2
    ZP. = PolynomialRing(ZZ)
    #call T(n,x) for the g.f. T_n(x)

Formula

G.f.: T_n(z) = Sum_{k>=0} T(n,k)*z^k is equal to
T_n(z) = 2*Sum_{i=1..floor((n-1)/2)} S_{n-i-2}(z)*S_{i-1}(z)*z^{n-i-1} + (S_{floor((n-2)/2))^2, where S_k(z) = Product_{i=1..k} (1+z^i). Note that deg(T_n(z)) = binomial(n-1,2).

Extensions

Entry revised by N. J. A. Sloane, Jun 06 2013

A182107 Number of monomer-dimer tatami tilings (no four tiles meet) of the n X n grid with n monomers and equal numbers of vertical and horizontal dimers, up to rotational symmetry.

Original entry on oeis.org

0, 0, 2, 2, 0, 0, 10, 20, 0, 0, 114, 210, 0, 0, 1322, 2460, 0, 0, 16428, 31122, 0, 0, 214660, 410378, 0, 0, 2897424, 5575682, 0, 0, 40046134, 77445152, 0, 0, 563527294, 1093987598, 0, 0, 8042361426, 15660579168, 0, 0, 116083167058, 226608224226, 0, 0, 1691193906828, 3308255447206, 0, 0, 24830916046462, 48658330768786, 0, 0, 366990100477712, 720224064591558, 0, 0, 5454733737618820
Offset: 2

Author

Alejandro Erickson, Apr 12 2012

Keywords

Comments

Monomer-dimer tatami tilings are arrangements of 1 X 1 monomers, 2 X 1 vertical dimers and 1 X 2 horizontal dimers on subsets of the integer grid, with the property that no four tiles meet at any point. The maximum possible number of monomers in an n X n tatami tiling is n. Balanced tatami tilings are those with an equal number of vertical and horizontal dimers.
Equals the ((n^2-n)/4)-th term of g.f. T_n(z) for A182110 if 4 divides n^2-n, and 0 otherwise.

Examples

			For n=4 the a(4)=2 solutions are
._ _ _ _.
|_| |_|_|
| |_|_ _|
|_|_ _| |
|_ _|_|_|
.
._ _ _ _.
|_|_| |_|
|_ _|_| |
| |_ _|_|
|_|_|_ _|
.
For n=5 the a(5)=2 solutions are
._ _ _ _ _.
|_|_ _| |_|
|_ _| |_|_|
|_| |_|_ _|
| |_|_ _| |
|_|_ _|_|_|
.
._ _ _ _ _.
|_| |_ _|_|
|_|_| |_ _|
|_ _|_| |_|
| |_ _|_| |
|_|_|_ _|_|
		

Crossrefs

Programs

  • Mathematica
    S[0, 0]=1; S[0, ]=0; S[n, k_] /; k<0 || k>Binomial[n+1, 2] =0; S[n_, k_]:= S[n, k] = S[n-1, k] + S[n-1, k-n];
    a[n_]:= 2 Sum[Sum[k2 = (n^2-n)/4 - (n-i-1) - k1; S[n-i-2, k1] S[i-1, k2], {k1, 0, (n^2-n)/4 - (n-i-1)}] + Sum[k2 = (n^2-n)/4; S[Floor[(n-2)/2], k1] S[Floor[(n-2)/2], k2], {k1, 0, (n^2-n)/4}], {i, 1, Floor[(n-1)/2]}];
    Table[a[n], {n, 2, 60}] (* Jean-François Alcover, Jan 29 2019 *)
  • Sage
    @cached_function
    def genS(n,z):
        out = 1
        for i in [j+1 for j in range(n)]:
            out = out*(1+z^i)
        return out
    VH = lambda n,z: 2*sum([genS(n-i-2,z)*genS(i-1,z)*z^(n-i-1) for i in range(1,floor((n-1)/2)+1)]) + genS(floor((n-2)/2),z)^2
    ZP. = PolynomialRing(ZZ)
    #4 divides n^2-n? coefficient of VH : 0
    a = lambda n: (4.divides(n^2-n) and [ZP(VH(n,x))[(n^2-n)/4]] or [0])[0]

Formula

a(n) = 2 * Sum_{i=1..floor((n-1)/2)} (Sum_{j+k == (n^2-n)/4-(n-i-1)} S(n-i-2,j) * S(i-1,k) + Sum_{j+k == (n^2-n)/4} S(floor((n-2)/2), j) * S(floor((n-2)/2), k) ), where S(n,k) = S(n-1, k) + S(n-1, k-n), S(0,0)=1, S(0,k) = 0, S(n,k) = 0 if k < 0 or k > binomial(n+1,2).