cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A226300 a(n) = A182107(4n).

Original entry on oeis.org

2, 10, 114, 1322, 16428, 214660, 2897424, 40046134, 563527294, 8042361426, 116083167058, 1691193906828, 24830916046462, 366990100477712, 5454733737618820, 81475220265330158, 1222209564554562110, 18404140554678144630, 278069131820486935046, 4214088001120913287256, 64037903464421065585244
Offset: 1

Views

Author

N. J. A. Sloane, Jun 06 2013

Keywords

Crossrefs

Programs

  • Mathematica
    S[0, 0] = 1; S[0, ] = 0; S[n, k_] /; k < 0 || k > Binomial[n + 1, 2] = 0; S[n_, k_] := S[n, k] = S[n - 1, k] + S[n - 1, k - n];
    b[n_] := 2 Sum[Sum[k2 = (n^2 - n)/4 - (n - i - 1) - k1; S[n - i - 2, k1]* S[i - 1, k2], {k1, 0, (n^2 - n)/4 - (n - i - 1)}] + Sum[k2 = (n^2 - n)/4; S[Floor[(n - 2)/2], k1]*S[Floor[(n - 2)/2], k2], {k1, 0, (n^2 - n)/4}], {i, 1, Floor[(n - 1)/2]}];
    a[n_] := b[4n];
    Table[a[n], {n, 1, 21}] (* Jean-François Alcover, Feb 23 2019 *)

A226301 a(n) = A182107(4n+1).

Original entry on oeis.org

2, 20, 210, 2460, 31122, 410378, 5575682, 77445152, 1093987598, 15660579168, 226608224226, 3308255447206, 48658330768786, 720224064591558, 10718841444208526, 160283814975116386, 2406806389622598056, 36273856567768931782, 548495166665709003794, 8318227159058988730096
Offset: 1

Views

Author

N. J. A. Sloane, Jun 06 2013

Keywords

Crossrefs

Programs

  • Mathematica
    S[0, 0] = 1; S[0, ] = 0; S[n, k_] /; k < 0 || k > Binomial[n + 1, 2] = 0; S[n_, k_] := S[n, k] = S[n - 1, k] + S[n - 1, k - n];
    b[n_] := 2 Sum[Sum[k2 = (n^2 - n)/4 - (n - i - 1) - k1; S[n - i - 2, k1] * S[i - 1, k2], {k1, 0, (n^2 - n)/4 - (n - i - 1)}] + Sum[k2 = (n^2 - n)/4; S[Floor[(n - 2)/2], k1] * S[Floor[(n - 2)/2], k2], {k1, 0, (n^2 - n)/4}], {i, 1, Floor[(n - 1)/2]}];
    a[n_] := b[4n+1];
    Table[a[n], {n, 1, 20}] (* Jean-François Alcover, Feb 23 2019 *)

A182110 Irregular triangle read by rows: generating function counting rotationally distinct n X n tatami tilings with n monomers and exactly k vertical dimers.

Original entry on oeis.org

1, 1, 2, 1, 2, 3, 2, 1, 2, 3, 6, 4, 2, 2, 1, 2, 3, 6, 9, 8, 7, 6, 2, 2, 2, 1, 2, 3, 6, 9, 14, 15, 14, 14, 10, 8, 6, 4, 2, 2, 2, 1, 2, 3, 6, 9, 14, 22, 24, 25, 28, 25, 22, 19, 14, 10, 10, 8, 4, 4, 2, 2, 2, 1, 2, 3, 6, 9, 14, 22, 32, 37, 42, 49, 48, 49, 46, 38, 34, 30, 24, 20, 16, 12, 12, 10, 6, 4, 4, 2, 2, 2
Offset: 0

Views

Author

Alejandro Erickson, Apr 12 2012

Keywords

Comments

Monomer-dimer tatami tilings are arrangements of 1 X 1 monomers, 2 X 1 vertical dimers and 1 X 2 horizontal dimers on subsets of the integer grid, with the property that no four tiles meet at any point. a(n) applies to tilings of this type which have monomers in their top corners.
a(n) is the table T(2,0); T(3,0), T(3,1); T(4,0), T(4,1), T(4,2), T(4,3); T(5,0), T(5,1) ... where T(n,k) is the number of n X n tilings of the type described above with exactly k vertical dimers when n is even and exactly k horizontal dimers when n is odd.

Examples

			T_5(z) = 1 + 2*z + 3*z^2 + 6*z^3 + 4*z^4 + 2*z^5 + 2*z^6;
T(5,2) = 3, and the tilings are as follows:
._ _ _ _ _.
|_|_ _| |_|
|_ _| |_| |
|_| |_| |_|
| |_| |_| |
|_|_|_|_|_|
.
._ _ _ _ _.
|_| |_ _|_|
| |_| |_ _|
|_| |_| |_|
| |_| |_| |
|_|_|_|_|_|
.
._ _ _ _ _.
|_| |_| |_|
| |_| |_| |
|_| |_| |_|
|_|_| |_|_|
|_ _|_|_ _|
The triangle begins:
1
1,2
1,2,3,2
1,2,3,6,4,2,2
1,2,3,6,9,8,7,6,2,2,2
1,2,3,6,9,14,15,14,14,10,8,6,4,2,2,2
1,2,3,6,9,14,22,24,25,28,25,22,19,14,10,10,8,4,4,2,2,2
1,2,3,6,9,14,22,32,37,42,49,48,49,46,38,34,30,24,20,16,12,12,10,6,4,4,2,2,2
1,2,3,6,9,14,22,32,46,56,66,78,84,90,92,88,81,76,69,58,51,44,38,34,28,22,20,16,14,12,8,6,4,4,2,2,2
...
		

Crossrefs

S_k(z) is entry A053632.
T_n(z) is a partition of A001787(n)/4.
Tatami tilings with the same number of vertical and horizontal dimers is A182107.

Programs

  • Sage
    @cached_function
    def S(n,z):
        out = 1
        for i in [j+1 for j in range(n)]:
            out = out*(1+z^i)
        return out
    T = lambda n,z: 2*sum([S(n-i-2,z)*S(i-1,z)*z^(n-i-1) for i in range(1,floor((n-1)/2)+1)]) + S(floor((n-2)/2),z)^2
    ZP. = PolynomialRing(ZZ)
    #call T(n,x) for the g.f. T_n(x)

Formula

G.f.: T_n(z) = Sum_{k>=0} T(n,k)*z^k is equal to
T_n(z) = 2*Sum_{i=1..floor((n-1)/2)} S_{n-i-2}(z)*S_{i-1}(z)*z^{n-i-1} + (S_{floor((n-2)/2))^2, where S_k(z) = Product_{i=1..k} (1+z^i). Note that deg(T_n(z)) = binomial(n-1,2).

Extensions

Entry revised by N. J. A. Sloane, Jun 06 2013
Showing 1-3 of 3 results.