A126063 Triangle read by rows: see A128196 for definition.
1, 1, 2, 3, 6, 4, 15, 30, 20, 8, 105, 210, 140, 56, 16, 945, 1890, 1260, 504, 144, 32, 10395, 20790, 13860, 5544, 1584, 352, 64, 135135, 270270, 180180, 72072, 20592, 4576, 832, 128, 2027025, 4054050, 2702700, 1081080, 308880, 68640, 12480, 1920, 256
Offset: 0
Examples
Triangle begins: 1 1, 2 3, 6, 4 15, 30, 20, 8 105, 210, 140, 56, 16 945, 1890, 1260, 504, 144, 32 10395, 20790, 13860, 5544, 1584, 352, 64 135135, 270270, 180180, 72072, 20592, 4576, 832, 128
Links
- Ivan Neretin, Rows n = 0..100, flattened
- P. Luschny, Variants of Variations.
Crossrefs
Programs
-
Maple
A126063 := (n,k) -> 2^k*doublefactorial(2*n-1)/ doublefactorial(2*k-1); seq(print(seq(A126063(n,k),k=0..n)),n=0..7); # Peter Luschny, Dec 20 2012
-
Mathematica
Flatten[Table[2^k (2n - 1)!!/(2k - 1)!!, {n, 0, 8}, {k, 0, n}]] (* Ivan Neretin, May 11 2015 *)
Formula
Let H be the diagonal matrix diag(1,2,4,8,...) and
let G be the matrix (n!! defined as A001147(n), -1!! = 1):
(-1)!!/(-1)!!
1!!/(-1)!! 1!!/1!!
3!!/(-1)!! 3!!/1!! 3!!/3!!
5!!/(-1)!! 5!!/1!! 5!!/3!! 5!!/5!!
...
Then T = G*H. [Gottfried Helms]
T(n,k) = 2^k*(2n - 1)!!/(2k - 1)!!. - Ivan Neretin, May 13 2015