A126064 Triangle read by rows, obtained by multiplying columns of triangle in A094587 by 1,2,4,8,16,... respectively.
1, 1, 2, 2, 4, 4, 6, 12, 12, 8, 24, 48, 48, 32, 16, 120, 240, 240, 160, 80, 32, 720, 1440, 1440, 960, 480, 192, 64, 5040, 10080, 10080, 6720, 3360, 1344, 448, 128, 40320, 80640, 80640, 53760, 26880, 10752, 3584, 1024, 256, 362880, 725760, 725760, 483840, 241920, 96768, 32256, 9216, 2304, 512
Offset: 0
Examples
1 1, 2 2, 4, 4 6, 12, 12, 8 24, 48, 48, 32, 16 120, 240, 240, 160, 80, 32 720, 1440, 1440, 960, 480, 192, 64 5040, 10080, 10080, 6720, 3360, 1344, 448, 128
Links
- Reinhard Zumkeller, Rows n = 0..150 of triangle, flattened
- Peter Luschny, Variants of Variations.
Programs
-
Haskell
a126064 n k = a126064_tabl !! n !! k a126064_row n = a126064_tabl !! n a126064_tabl = zipWith (zipWith (*)) a094587_tabl a059268_tabl -- Reinhard Zumkeller, Jul 05 2012
-
Maple
A126064 := proc(n,k) binomial(n,k)*(n-k)!*2^k ; end: for n from 0 to 13 do for k from 0 to n do printf("%d,",A126064(n,k)) ; od: od: # R. J. Mathar, Nov 02 2007
-
Mathematica
m = 9; T = Transpose[2^Range[0, m] Table[n!/k!, {k, 0, m}, {n, 0, m}]]; Table[T[[n+1, k+1]], {n, 0, m}, {k, 0, n}] // Flatten (* Jean-François Alcover, Apr 04 2020 *)
Extensions
More terms from R. J. Mathar, Nov 02 2007
Comments