cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A167022 Expansion of sqrt(1 - 2*x - 3*x^2) in powers of x.

Original entry on oeis.org

1, -1, -2, -2, -4, -8, -18, -42, -102, -254, -646, -1670, -4376, -11596, -31022, -83670, -227268, -621144, -1706934, -4713558, -13072764, -36398568, -101704038, -285095118, -801526446, -2259520830, -6385455594, -18086805002, -51339636952, -146015545604
Offset: 0

Views

Author

Michael Somos, Oct 27 2009

Keywords

Comments

Sequence is to Motzkin numbers as A002420 is to Catalan numbers.

Examples

			G.f. = 1 - x - 2*x^2 - 2*x^3 - 4*x^4 - 8*x^5 - 18*x^6 - 42*x^7 - 102*x^8 + ...
		

Crossrefs

Programs

  • Mathematica
    a[ n_] := SeriesCoefficient[ Sqrt[1 - 2 x - 3 x^2], {x, 0, n}] (* Michael Somos, Jan 25 2014 *)
  • PARI
    {a(n) = polcoeff( sqrt(1 - 2*x - 3*x^2 + x * O(x^n)), n)}

Formula

D-finite with recurrence: n*a(n) = (2*n - 3)*a(n-1) + (3*n - 9)*a(n-2) for n>1.
0 = a(n) * (9*a(n+1) + 15*a(n+2) - 12*a(n+3)) + a(n+1) * (-3*a(n+1) + 10*a(n+2) - 5*a(n+3)) + a(n+2) * (a(n+2) + a(n+3)) for all n in Z. - Michael Somos, Mar 23 2012
G.f.: sqrt(1 - 2*x - 3*x^2).
Convolution inverse of A002426. A007971(n) = -a(n) unless n=0. A126068(n) = -a(n) unless n=0 or n=1. A001006(n) = -a(n+2)/2 unless n=0 or n=1.
G.f.: A(x)=sqrt(1-2*a*x+((a)^2-4*b)*(x^2)) =1-a*x-2*b*x^2/G(0) ; G(k) = 1 - a*x - b*x^2/G(k+1). - Sergei N. Gladkovskii, Dec 05 2011
a=1;b=1;A(x)=(1-2*x-3*x^2)^(1/2)=1-x-2*x^2/G(0) ; G(k) = 1 - x - x^2/G(k+1); (continued fraction). - Sergei N. Gladkovskii, Dec 05 2011
G.f.: sqrt(1-2*x-3*(x^2))=1 - x/G(0) = (3*x+2)*G(0) - 1 ; G(k) = 1 - 2*x/(1 + x/(1 + x/(1 - 2*x/(1 - x/(2 - x/G(k+1)))))) ; (continued fraction). - Sergei N. Gladkovskii, Dec 11 2011
a(n) ~ -3^(n - 1/2) / (sqrt(Pi) * n^(3/2)). - Vaclav Kotesovec, Jun 05 2018
a(n) = 2*A168051(n), n>1. - R. J. Mathar, Jan 23 2020

A168055 Expansion of 2 - x - sqrt(1-2x-3x^2).

Original entry on oeis.org

1, 0, 2, 2, 4, 8, 18, 42, 102, 254, 646, 1670, 4376, 11596, 31022, 83670, 227268, 621144, 1706934, 4713558, 13072764, 36398568, 101704038, 285095118, 801526446, 2259520830, 6385455594, 18086805002, 51339636952, 146015545604
Offset: 0

Views

Author

Paul Barry, Nov 17 2009

Keywords

Comments

Hankel transform is A168054.

Examples

			G.f. = 1 + 2*x^2 + 2*x^3 + 4*x^4 + 8*x^5 + 18*x^6 + 42*x^7 + 102*x^8 + 254*x^9 + ...
		

Crossrefs

Cf. A168049.
Cf. A126068, A007971. [R. J. Mathar, Nov 18 2009]

Programs

  • Mathematica
    a[ n_] := SeriesCoefficient[ 2 - x - Sqrt[1 - 2 x - 3 x^2], {x, 0, n}] (* Michael Somos, Jan 25 2014 *)
  • PARI
    {a(n) = polcoeff( 2 - x - sqrt(1 - 2*x - 3*x^2 + x * O(x^n)), n)} /* Michael Somos, Jan 25 2014 */

Formula

a(n+2) = 2*A001006(n).
a(n) = 0^n + 2*Sum_{k=0..floor((n-2)/2)} C(n-2,2k)*A000108(k).
0 = a(n) * (9*a(n+1) + 15*a(n+2) - 12*a(n+3)) + a(n+1) * (-3*a(n+1) + 10*a(n+2) - 5*a(n+3)) + a(n+2) * (a(n+2) + a(n+3)) if n>0. - Michael Somos, Jan 25 2014
D-finite with recurrence: n*a(n) +(-2*n+3)*a(n-1) +3*(-n+3)*a(n-2)=0. - R. J. Mathar, Nov 19 2014

Extensions

Name corrected by Michael Somos, Mar 23 2012
Showing 1-2 of 2 results.