A126093 Inverse binomial matrix applied to A110877.
1, 0, 1, 1, 2, 1, 2, 6, 4, 1, 6, 18, 15, 6, 1, 18, 57, 54, 28, 8, 1, 57, 186, 193, 118, 45, 10, 1, 186, 622, 690, 474, 218, 66, 12, 1, 622, 2120, 2476, 1856, 976, 362, 91, 14, 1, 2120, 7338, 8928, 7164, 4170, 1791, 558, 120, 16, 1
Offset: 0
Examples
Triangle begins: 1; 0, 1; 1, 2, 1; 2, 6, 4, 1; 6, 18, 15, 6, 1; 18, 57, 54, 28, 8, 1; 57, 186, 193, 118, 45, 10, 1; 186, 622, 690, 474, 218, 66, 12, 1; 622, 2120, 2476, 1856, 976, 362, 91, 14, 1; 2120, 7338, 8928, 7164, 4170, 1791, 558, 120, 16, 1; Production matrix begins 0, 1; 1, 2, 1; 0, 1, 2, 1; 0, 0, 1, 2, 1; 0, 0, 0, 1, 2, 1; 0, 0, 0, 0, 1, 2, 1; 0, 0, 0, 0, 0, 1, 2, 1; 0, 0, 0, 0, 0, 0, 1, 2, 1; 0, 0, 0, 0, 0, 0, 0, 1, 2, 1; - _Philippe Deléham_, Nov 07 2011
Links
- G. C. Greubel, Table of n, a(n) for the first 50 rows, flattened
- Yidong Sun and Luping Ma, Minors of a class of Riordan arrays related to weighted partial Motzkin paths, Eur. J. Comb. 39, 157-169 (2014), Table 2.2.
Programs
-
Mathematica
T[0, 0, x_, y_]:= 1; T[n_, 0, x_, y_]:= x*T[n-1,0,x,y] + T[n-1,1,x,y]; T[n_, k_, x_, y_]:= T[n, k, x, y]= If[k<0 || k>n, 0, T[n-1,k-1,x,y] + y*T[n-1,k,x,y] + T[n-1,k+1,x,y]]; Table[T[n,k,0,2], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Apr 21 2017 *)
-
Sage
@CachedFunction def T(n, k, x, y): if (k<0 or k>n): return 0 elif (n==0 and k==0): return 1 elif (k==0): return x*T(n-1,0,x,y) + T(n-1,1,x,y) else: return T(n-1,k-1,x,y) + y*T(n-1,k,x,y) + T(n-1,k+1,x,y) [[T(n,k,0,2) for k in (0..n)] for n in (0..12)] # G. C. Greubel, Jan 27 2020
Formula
Triangle T(n,k), 0<=k<=n, read by rows defined by : T(0,0)=1, T(n,k)=0 if k<0 or if k>n, T(n,0) = T(n-1,1), T(n,k) = T(n-1,k-1) + 2*T(n-1,k) + T(n-1,k+1) for k>=1.
Sum_{k=0..n} T(m,k)*T(n,k) = T(m+n,0) = A000957(m+n+1).
Sum_{k=0..n-1} T(n,k) = A026641(n), for n>=1. - Philippe Deléham, Mar 05 2007
Sum_{k=0..n} T(n,k)*(3k+1) = 4^n. - Philippe Deléham, Mar 22 2007
Comments