cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A126093 Inverse binomial matrix applied to A110877.

Original entry on oeis.org

1, 0, 1, 1, 2, 1, 2, 6, 4, 1, 6, 18, 15, 6, 1, 18, 57, 54, 28, 8, 1, 57, 186, 193, 118, 45, 10, 1, 186, 622, 690, 474, 218, 66, 12, 1, 622, 2120, 2476, 1856, 976, 362, 91, 14, 1, 2120, 7338, 8928, 7164, 4170, 1791, 558, 120, 16, 1
Offset: 0

Views

Author

Philippe Deléham, Mar 03 2007

Keywords

Comments

Diagonal sums are A065601. - Philippe Deléham, Mar 05 2007
This triangle belongs to the family of triangles defined by: T(0,0)=1, T(n,k)=0 if k<0 or if k>n, T(n,0) = x*T(n-1,0) + T(n-1,1), T(n,k) = T(n-1,k-1) + y*T(n-1,k) + T(n-1,k+1) for k>=1 . Other triangles arise by choosing different values for (x,y): (0,0) -> A053121; (0,1) -> A089942; (0,2) -> A126093; (0,3) -> A126970; (1,0)-> A061554; (1,1) -> A064189; (1,2) -> A039599; (1,3) -> A110877; (1,4) -> A124576; (2,0) -> A126075; (2,1) -> A038622; (2,2) -> A039598; (2,3) -> A124733; (2,4) -> A124575; (3,0) -> A126953; (3,1) -> A126954; (3,2) -> A111418; (3,3) -> A091965; (3,4) -> A124574; (4,3) -> A126791; (4,4) -> A052179; (4,5) -> A126331; (5,5) -> A125906. - Philippe Deléham, Sep 25 2007

Examples

			Triangle begins:
     1;
     0,    1;
     1,    2,    1;
     2,    6,    4,    1;
     6,   18,   15,    6,    1;
    18,   57,   54,   28,    8,    1;
    57,  186,  193,  118,   45,   10,   1;
   186,  622,  690,  474,  218,   66,  12,   1;
   622, 2120, 2476, 1856,  976,  362,  91,  14,  1;
  2120, 7338, 8928, 7164, 4170, 1791, 558, 120, 16, 1;
Production matrix begins
  0, 1;
  1, 2, 1;
  0, 1, 2, 1;
  0, 0, 1, 2, 1;
  0, 0, 0, 1, 2, 1;
  0, 0, 0, 0, 1, 2, 1;
  0, 0, 0, 0, 0, 1, 2, 1;
  0, 0, 0, 0, 0, 0, 1, 2, 1;
  0, 0, 0, 0, 0, 0, 0, 1, 2, 1;
- _Philippe Deléham_, Nov 07 2011
		

Programs

  • Mathematica
    T[0, 0, x_, y_]:= 1; T[n_, 0, x_, y_]:= x*T[n-1,0,x,y] + T[n-1,1,x,y]; T[n_, k_, x_, y_]:= T[n, k, x, y]= If[k<0 || k>n, 0, T[n-1,k-1,x,y] + y*T[n-1,k,x,y] + T[n-1,k+1,x,y]]; Table[T[n,k,0,2], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Apr 21 2017 *)
  • Sage
    @CachedFunction
    def T(n, k, x, y):
        if (k<0 or k>n): return 0
        elif (n==0 and k==0): return 1
        elif (k==0): return x*T(n-1,0,x,y) + T(n-1,1,x,y)
        else: return T(n-1,k-1,x,y) + y*T(n-1,k,x,y) + T(n-1,k+1,x,y)
    [[T(n,k,0,2) for k in (0..n)] for n in (0..12)] # G. C. Greubel, Jan 27 2020

Formula

Triangle T(n,k), 0<=k<=n, read by rows defined by : T(0,0)=1, T(n,k)=0 if k<0 or if k>n, T(n,0) = T(n-1,1), T(n,k) = T(n-1,k-1) + 2*T(n-1,k) + T(n-1,k+1) for k>=1.
Sum_{k=0..n} T(m,k)*T(n,k) = T(m+n,0) = A000957(m+n+1).
Sum_{k=0..n-1} T(n,k) = A026641(n), for n>=1. - Philippe Deléham, Mar 05 2007
Sum_{k=0..n} T(n,k)*(3k+1) = 4^n. - Philippe Deléham, Mar 22 2007