A126105 Prime(n)^2*prime(n+1)...*prime(a(n)) is the least product of consecutive primes which is abundant. Note that only the first term is squared.
2, 5, 10, 20, 34, 50, 72, 97, 129, 165, 203, 248, 295, 346, 405, 469, 537, 607, 685, 766, 853, 949, 1049, 1155, 1264, 1376, 1494, 1620, 1754, 1897, 2048, 2193, 2346, 2503, 2669, 2836, 3012, 3193, 3378, 3572, 3770, 3973, 4186, 4400, 4624, 4855, 5098, 5339, 5578
Offset: 1
Examples
a(3)=10 since x=5^2*7*11*13*17*19*23*29=5391411025 is abundant with sigma(x)=10799308800 and sigma(x)-2*x=16486750.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..200
Programs
-
Mathematica
a[n_] := Module[{p = Prime[n]}, c = 1; pr = 1 + 1/p + 1/p^2; While[pr < 2, p = NextPrime[p]; pr *= (1 + 1/p); c++]; c + n - 1]; Array[a, 50] (* Amiram Eldar, Aug 14 2019 *)
Extensions
More terms from Stefan Steinerberger, May 11 2007
a(21) corrected and more terms added by Amiram Eldar, Aug 14 2019