cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A181659 Numbers at which the sum of the iterated totient function (A092693) attains a record.

Original entry on oeis.org

1, 2, 3, 5, 7, 11, 13, 17, 23, 29, 37, 41, 47, 53, 59, 71, 73, 79, 83, 89, 101, 107, 131, 137, 167, 179, 227, 233, 257, 289, 317, 347, 359, 389, 443, 449, 461, 467, 503, 557, 563, 569, 587, 641, 719, 809, 839, 857, 929, 977, 983, 1013, 1019, 1097, 1187, 1193, 1283
Offset: 1

Views

Author

T. D. Noe, Nov 04 2010

Keywords

Comments

Most of these numbers are prime. The first four composites are 289, 2329, 4369, and 4913.

Crossrefs

Cf. A126106 (record values)

Programs

  • Mathematica
    kMax=2*3*5*7*11*13; t=Table[0,{kMax}]; Do[e=EulerPhi[k]; t[[k]]=e+t[[e]], {k,2,kMax}]; mx=-1; Reap[Do[If[t[[k]]>mx, mx=t[[k]]; Sow[k]], {k,kMax}]][[2,1]]

A332737 Composite terms of A181659, where the sum of the iterated totient function attains a record.

Original entry on oeis.org

289, 2329, 4369, 4913, 18769, 21331, 35209, 66049, 128881, 197143, 258121, 281929, 516961, 739903, 971203, 1762249, 1942663, 2070721, 2898703, 2952673, 3820819, 4142881, 8288641, 16773619, 16843009, 16974593, 20229241, 21762361, 32472241, 132575071, 187903693
Offset: 1

Views

Author

Amiram Eldar, Feb 21 2020

Keywords

Comments

Most of the terms of A181659 are primes. Out of the first 10^4 terms of A181659 only 28 are composites.
The indices of the terms of this sequence in A181659 are 30, 73, 93, 99, 154, 161, 191, 236, 286, 316, ...
The corresponding record values (terms of A126106) are 527, 4223, 8191, 8847, 35527, 39423, 67583, 131327, 246869, 376559, 493739, 550911, 1009981, 1466879, 1884671, 3442687, 3819519, 4089245, 5707263, 5791743, 7444991, 8178491, 16464253, 33260031, 33554431, 33718527, 39989247, 42809067, 63932219, 263382015, 372697723.

Crossrefs

Programs

  • Mathematica
    s[n_] := Plus @@ FixedPointList[EulerPhi, n] - n - 1; seq={}; smax = 1; Do[s1 =s[n];  If[s1 >smax, smax = s1; If[CompositeQ[n], AppendTo[seq, n]]], {n, 1,  5000}]; seq
Showing 1-2 of 2 results.