A126170 Larger member of an infinitary amicable pair.
126, 846, 1260, 7920, 8460, 11760, 10856, 14595, 17700, 43632, 45888, 49308, 83142, 62700, 71145, 73962, 96576, 83904, 107550, 88730, 178800, 112672, 131100, 125856, 168730, 149952, 196650, 203432, 206752, 224928, 306612, 365700, 399592, 419256, 460640, 548550
Offset: 1
Keywords
Examples
a(5)=8460 because the fifth infinitary amicable pair is (5940,8460) and 8460 is its largest member.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..7916
- Jan Munch Pedersen, Tables of Aliquot Cycles.
Programs
-
Mathematica
ExponentList[n_Integer, factors_List] := {#, IntegerExponent[n, # ]} & /@ factors; InfinitaryDivisors[1] := {1}; InfinitaryDivisors[n_Integer?Positive] := Module[ { factors = First /@ FactorInteger[n], d = Divisors[n] }, d[[Flatten[Position[ Transpose[ Thread[Function[{f, g}, BitOr[f, g] == g][ #, Last[ # ]]] & /@ Transpose[Last /@ ExponentList[ #, factors] & /@ d]], ?( And @@ # &), {1}]] ]] ] Null; properinfinitarydivisorsum[k] := Plus @@ InfinitaryDivisors[k] - k; InfinitaryAmicableNumberQ[k_] := If[Nest[properinfinitarydivisorsum, k, 2] == k && ! properinfinitarydivisorsum[k] == k, True, False]; data1 = Select[ Range[10^6], InfinitaryAmicableNumberQ[ # ] &]; data2 = properinfinitarydivisorsum[ # ] & /@ data1; data3 = Table[{data1[[k]], data2[[k]]}, {k, 1, Length[data1]}]; data4 = Select[data3, First[ # ] < Last[ # ] &]; Table[Last[data4[[k]]], {k, 1, Length[data4]}] fun[p_, e_] := Module[{b = IntegerDigits[e, 2]}, m = Length[b]; Product[If[b[[j]] > 0, 1 + p^(2^(m - j)), 1], {j, 1, m}]]; infs[n_] := Times @@ (fun @@@ FactorInteger[n]) - n; s = {}; Do[k = infs[n]; If[k > n && infs[k] == n, AppendTo[s, k]], {n, 2, 10^5}]; s (* Amiram Eldar, Jan 22 2019 *)
Formula
The values of n for which isigma(m)=isigma(n)=m+n and n>m.
Extensions
a(33)-a(36) from Amiram Eldar, Jan 22 2019
Comments