cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A126173 Larger element of a reduced infinitary amicable pair.

Original entry on oeis.org

2295, 75495, 817479, 1902215, 1341495, 1348935, 2226014, 2421704, 3123735, 3010215, 5644415, 4282215, 7509159, 10106504, 12900734, 24519159, 31356314, 41950359, 43321095, 80870615, 42125144, 85141719, 87689415, 87802407, 86477895, 105993657, 168669879, 129081735
Offset: 1

Views

Author

Ant King, Dec 23 2006

Keywords

Comments

A divisor of n is called infinitary if it is a product of divisors of the form p^{y_a 2^a}, where p^y is a prime power dividing n and sum_a y_a 2^a is the binary representation of y.

Examples

			a(3)=817479 because 817479 is the largest member of the third reduced infinitary amicable pair, (573560,817479)
		

Crossrefs

Programs

  • Mathematica
    ExponentList[n_Integer, factors_List] := {#, IntegerExponent[n, # ]} & /@ factors; InfinitaryDivisors[1] := {1}; InfinitaryDivisors[n_Integer?Positive] := Module[ { factors = First /@ FactorInteger[n], d = Divisors[n] }, d[[Flatten[Position[ Transpose[ Thread[Function[{f, g}, BitOr[f, g] == g][ #, Last[ # ]]] & /@ Transpose[Last /@ ExponentList[ #, factors] & /@ d]], ?( And @@ # &), {1}]] ]] ] Null; properinfinitarydivisorsum[k] := Plus @@ InfinitaryDivisors[k] - k; ReducedInfinitaryAmicableNumberQ[n_] := If[properinfinitarydivisorsum[properinfinitarydivisorsum[ n] - 1] == n + 1 && n > 1, True, False]; ReducedInfinitaryAmicablePairList[k_] := (anlist = Select[Range[k], ReducedInfinitaryAmicableNumberQ[ # ] &]; prlist = Table[Sort[{anlist[[n]], properinfinitarydivisorsum[anlist[[n]]] - 1}], {n, 1, Length[anlist]}]; amprlist = Union[prlist, prlist]); data1 = ReducedInfinitaryAmicablePairList[10^7]; Table[Last[data1[[k]]], {k, 1, Length[data1]}]
    fun[p_, e_] := Module[{b = IntegerDigits[e, 2]}, m = Length[b]; Product[If[b[[j]] > 0, 1 + p^(2^(m - j)), 1], {j, 1, m}]]; infs[n_] := Times @@ (fun @@@ FactorInteger[n]) - n; s = {}; Do[k = infs[n] - 1; If[k > n && infs[k] == n + 1, AppendTo[s, k]], {n, 2, 10^5}]; s (* Amiram Eldar, Jan 22 2019 *)

Formula

The values of n for which isigma(m)=isigma(n)=m+n+1, where n>m and isigma(n) is given by A049417(n).

Extensions

a(15)-a(28) from Amiram Eldar, Jan 22 2019