A126183 Triangle read by rows: T(n,k) is number of hex trees with n edges and k nonroot nodes of outdegree 2.
1, 3, 10, 33, 3, 108, 29, 351, 186, 6, 1134, 990, 95, 3645, 4725, 900, 15, 11664, 20979, 6615, 329, 37179, 88452, 41580, 4116, 42, 118098, 358668, 234738, 38556, 1176, 373977, 1410615, 1224720, 300510, 18270, 126, 1180980, 5412825, 6014250
Offset: 0
Examples
Triangle begins: 1; 3; 10; 33, 3; 108, 29; 351, 186, 6;
Links
- F. Harary and R. C. Read, The enumeration of tree-like polyhexes, Proc. Edinburgh Math. Soc. (2) 17 (1970), 1-13.
Programs
-
Maple
G := 1/2/t^2/z^2*(-11*t*z^2+2*t^2*z^2+3*z*t+9*z^2-6*z+1-sqrt(1-58*t*z^2-12*z+54*z^2 +6*z*t+81*z^4-108*z^3 -36*t^3*z^4+153*t^2*z^4 -198*t*z^4-78*t^2*z^3+186*t*z^3+9*t^2*z^2)): Gser:=simplify(series(G,z=0,16)): for n from 0 to 18 do P[n]:=sort(coeff(Gser,z,n)) od: 1; for n from 1 to 13 do seq(coeff(P[n],t,j),j=0..floor((n-1)/2)) od; # yields sequence in triangular form
-
Mathematica
len = 40; m = Ceiling[2 Sqrt[len]]; gf[t_, z_] = g /. Solve[g == 1 + 3z* h + z^2*h^2 && h == 1 + 3z*h + t*z^2*h^2, g, h][[1]]; gser = Series[gf[t, z], {z, 0, m}]; p[n_] := Coefficient[gser, z, n]; tr[n_, k_] := tr[n, k] = Coefficient[p[n], t, k]; Flatten[Table[ tr[n, k], {n, 0, m}, {k, 0, Max[0, Floor[(n-1)/2]]}]][[1 ;; len]] (* Jean-François Alcover, May 31 2011, after Maple prog. *)
Formula
G.f.: G(t,z)=1+3*z*H+z^2*H^2, where H=H(t,z) is defined by H=1+3*z*H+t*z^2*H^2 (see explicit expression of G(t,z) at the Maple program).
Extensions
Keyword tabl changed to tabf by Michel Marcus, Apr 09 2013
Comments