cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A126222 Triangle read by rows: T(n,k) is the number of 2-Motzkin paths (i.e., Motzkin paths with blue and red level steps) without red level steps on the x-axis, having length n and k level steps (0 <= k <= n).

Original entry on oeis.org

1, 0, 1, 1, 0, 1, 0, 4, 0, 1, 2, 0, 11, 0, 1, 0, 15, 0, 26, 0, 1, 5, 0, 69, 0, 57, 0, 1, 0, 56, 0, 252, 0, 120, 0, 1, 14, 0, 364, 0, 804, 0, 247, 0, 1, 0, 210, 0, 1800, 0, 2349, 0, 502, 0, 1, 42, 0, 1770, 0, 7515, 0, 6455, 0, 1013, 0, 1, 0, 792, 0, 11055, 0, 27940, 0, 16962, 0
Offset: 0

Views

Author

Emeric Deutsch, Dec 28 2006

Keywords

Comments

Row sums are the Catalan numbers (A000108).
A166073 appears to be a variant of A126222 where zeros are sorted to the start of each row. - R. J. Mathar, Aug 21 2010

Examples

			T(3,1)=4 because we have BUD, UBD, URD and UDB, where U=(1,1), D=(1,-1), B=blue (1,0), R=red (1,0).
Triangle starts:
1
0,1
1,0,1
0,4,0,1
2,0,11,0,1
0,15,0,26,0,1
5,0,69,0,57,0,1
0,56,0,252,0,120,0,1
14,0,364,0,804,0,247,0,1
0,210,0,1800,0,2349,0,502,0,1
42,0,1770,0,7515,0,6455,0,1013,0,1
0,792,0,11055,0,27940,0,16962,0,2036,0,1
132,0,8217,0,57035,0,95458,0,43086,0,4083,0,1
0,3003,0,62062,0,257257,0,305812,0,106587,0,8178,0,1
429,0,37037,0,381381,0,1049685,0,931385,0,258153,0,16369,0,1
0,11440,0,328328,0,2022384,0,3962140,0,2723280,0,614520,0,32752,0,1
1430,0,163592,0,2341976,0,9591764,0,14051660,0,7699800,0,1441928,0,65519,0,1
0,43758,0,1665456,0,14275716,0,41666184,0,47352820,0,21167312,0,3342489,0,131054,0,1
4862,0,712062,0,13527852,0,77161980,0,168567444,0,152915748,0,56818743,0,7667883,0,262125,0,1
...
		

Crossrefs

Programs

  • Maple
    G:=(1-sqrt(1-4*z*t-4*z^2+4*z^2*t^2))/2/z/(t+z-t^2*z): Gser:=simplify(series(G,z=0,15)): for n from 0 to 12 do P[n]:=sort(expand(coeff(Gser,z,n))) od: for n from 0 to 12 do seq(coeff(P[n],t,j),j=0..n) od; # yields sequence in triangular form
    # second Maple program:
    b:= proc(x, y) option remember; `if`(y>x or y<0, 0,
          `if`(x=0, 1, expand(b(x-1, y)*`if`(y=0, 1, 2)*z+
           b(x-1, y+1) +b(x-1, y-1))))
        end:
    T:= (n, k)-> coeff(b(n, 0), z, k):
    seq(seq(T(n, k), k=0..n), n=0..15);  # Alois P. Heinz, May 20 2014
  • Mathematica
    b[x_, y_] := b[x, y] = If[y>x || y<0, 0, If[x == 0, 1, Expand[b[x-1, y]*If[y == 0, 1, 2]*z + b[x-1, y+1] + b[x-1, y-1]]]]; T[n_, k_] := Coefficient[b[n, 0], z, k]; Table[Table[T[n, k], {k, 0, n}], {n, 0, 15}] // Flatten (* Jean-François Alcover, Feb 19 2015, after Alois P. Heinz *)

Formula

T(2n,0) = C(2n,n)/(n+1) (the Catalan numbers; A000108).
Sum_{k=0..n} k*T(n,k) = A126223(n).
G.f.: G = G(t,z) satisfies z(t + z - t^2*z)G^2 - G + 1 = 0.