cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A126272 a(1)=27; if n = Product p_i^e_i, n>1, then a(n) = Product p_{i+2}^{e_i+2}.

Original entry on oeis.org

27, 125, 343, 625, 1331, 42875, 2197, 3125, 2401, 166375, 4913, 214375, 6859, 274625, 456533, 15625, 12167, 300125, 24389, 831875, 753571, 614125, 29791, 1071875, 14641, 857375, 16807, 1373125, 50653, 57066625, 68921, 78125, 1685159
Offset: 1

Views

Author

Jonathan Vos Post, Mar 09 2007

Keywords

Comments

Analog of A045967 a(1)=4; if n = Product p_i^e_i, n>1, then a(n) = Product p_{i+1}^{e_i+1}. In a sense, n is the zeroth sequence in a family of sequences, A045967 is the first sequence in a family of sequences and a(n) is the second sequence in a family of sequences.
If we had a(1) = 1 (instead of 4), then this would be multiplicative and a permutation of A353502. - Amiram Eldar, Aug 11 2022

Crossrefs

Programs

  • Maple
    A126272 := proc(n) local pf,i,p,e,resul ; if n = 1 then 27 ; else pf := ifactors(n)[2] ; resul := 1 ; for i from 1 to nops(pf) do p := op(1,op(i,pf)) ; e := op(2,op(i,pf)) ; resul := resul * nextprime(nextprime(p))^(e+2) ; od ; resul ; fi ; end: for n from 1 to 40 do printf("%d, ",A126272(n)) ; od ; # R. J. Mathar, Apr 20 2007
  • Mathematica
    f[p_, e_] := NextPrime[p, 2]^(e + 2); a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]

Formula

Sum_{n>=1} 1/a(n) = (72/95)*A065483 - 26/27. - Amiram Eldar, Aug 11 2022

Extensions

More terms from R. J. Mathar, Apr 20 2007